1
|
Jin R, Wang M, Shukla M, Lei Y, An D, Du J, Li G. J147 treatment protects against traumatic brain injury by inhibiting neuronal endoplasmic reticulum stress potentially via the AMPK/SREBP-1 pathway. Transl Res 2024; 274:21-34. [PMID: 39245209 DOI: 10.1016/j.trsl.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Endoplasmic reticulum (ER) stress is recognized as a crucial contributor to the progression of traumatic brain injury (TBI) and represents a potential target for therapeutic intervention. This study aimed to assess the potential of J147, a novel neurotrophic compound, in alleviating ER stress by modulating related signaling pathways, thereby promoting functional recovery in TBI. To this end, adult mice underwent controlled cortical impact (CCI) injury to induce TBI, followed by oral administration of J147 one-hour post-injury, with daily dosing for 3 to 7 days. Multiple behavioral assessments were conducted over 35 days, revealing a significant, dose-dependent improvement in neurofunctional recovery with J147 treatment. The neuropathological analysis demonstrated reduced acute neurodegeneration (observed at three days through FJC staining), enhanced long-term neuron survival (H&E and Nissl staining), and improved neuroplasticity (Golgi staining) at 35 days post-TBI. At the molecular level, TBIinduced AMP-activated protein kinase (AMPK) dephosphorylation, sterol regulatory element binding protein-1 (SREBP-1) activation, and upregulation of ER stress marker proteins, including phosphorylated eukaryotic initiation factor-2α (p-eIF2a), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in perilesional cortex neurons at three days post-injury. Notably, the J147 treatment significantly attenuated AMPK dephosphorylation, SERBP-1 activation, and expression of the ER stress markers. In summary, this study reveals the therapeutic promise of J147 in mitigating secondary brain damage associated with TBI and improving long-term functional recovery by modulating ER stress pathways.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| | - Min Wang
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
| | - Dong An
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Jiwen Du
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Guohong Li
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
2
|
Qiu F, Wang Y, Du Y, Zeng C, Liu Y, Pan H, Ke C. Current evidence for J147 as a potential therapeutic agent in nervous system disease: a narrative review. BMC Neurol 2023; 23:317. [PMID: 37674139 PMCID: PMC10481599 DOI: 10.1186/s12883-023-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanmei Wang
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yunbo Du
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
3
|
Fan G, Chen S, Liang L, Zhang H, Yu R. Novel Small Molecule Positive Allosteric Modulator SPAM1 Triggers the Nuclear Translocation of PAC1-R to Exert Neuroprotective Effects through Neuron-Restrictive Silencer Factor. Int J Mol Sci 2022; 23:ijms232415996. [PMID: 36555637 PMCID: PMC9784932 DOI: 10.3390/ijms232415996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts effective neuroprotective activity through its specific receptor, PAC1-R. We accidentally discovered that as a positive allosteric modulator (PAM) of PAC1-R, the small-molecule PAM (SPAM1) has a hydrazide-like structure, but different binding characteristics, from hydrazide for the N-terminal extracellular domain of PAC1-R (PAC1-R-EC1). SPAM1 had a significant neuroprotective effect against oxidative stress, both in a cell model treated with hydrogen peroxide (H2O2) and an aging mouse model induced by D-galactose (D-gal). SPAM1 was found to block the decrease in PACAP levels in brain tissues induced by D-gal and significantly induced the nuclear translocation of PAC1-R in PAC1R-CHO cells and mouse retinal ganglion cells. Nuclear PAC1-R was subjected to fragmentation and the nuclear 35 kDa, but not the 15 kDa fragments, of PAC1-R interacted with SP1 to upregulate the expression of Huntingtin (Htt), which then exerted a neuroprotective effect by attenuating the binding availability of the neuron-restrictive silencer factor (NRSF) to the neuron-restrictive silencer element (NRSE). This resulted in an upregulation of the expression of NRSF-related neuropeptides, including PACAP, the brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), and synapsin-1 (SYN1). The novel mechanism reported in this study indicates that SPAM1 has potential use as a drug, as it exerts a neuroprotective effect by regulating NRSF.
Collapse
Affiliation(s)
- Guangchun Fan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Correspondence: or ; Tel.: +86-133-9262-5921
| |
Collapse
|
4
|
Jin R, Wang M, Zhong W, Kissinger CR, Villafranca JE, Li G. J147 Reduces tPA-Induced Brain Hemorrhage in Acute Experimental Stroke in Rats. Front Neurol 2022; 13:821082. [PMID: 35309561 PMCID: PMC8925862 DOI: 10.3389/fneur.2022.821082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose J147, a novel neurotrophic compound, was originally developed to treat aging-associated neurological diseases. Based on the broad spectrum of cytoprotective effects exhibited by this compound, we investigated whether J147 has cerebroprotection for acute ischemic stroke and whether it can enhance the effectiveness of thrombolytic therapy with tissue plasminogen activator (tPA). Methods Rats were subjected to transient occlusion of the middle cerebral artery (tMCAO) by insertion of an intraluminal suture or embolic middle cerebral artery occlusion (eMCAO), and treated intravenously with J147 alone or in combination with tPA. Results We found that J147 treatment significantly reduced infarct volume when administered at 2 h after stroke onset in the tMCAO model, but had no effect in eMCAO without tPA. However, combination treatment with J147 plus tPA at 4 h after stroke onset significantly reduced infarct volume and neurological deficits at 72 h after stroke compared with saline or tPA alone groups in the eMCAO model. Importantly, the combination treatment significantly reduced delayed tPA-associated brain hemorrhage and secondary microvascular thrombosis. These protective effects were associated with J147-mediated inhibition of matrix metalloproteinase-9 (MMP9), 15-lipoxygenase-1, and plasminogen activator inhibitor (PAI) expression in the ischemic hemispheres (predominantly in ischemic cerebral endothelium). Moreover, the combination treatment significantly reduced circulating platelet activation and platelet-leukocyte aggregation compared with saline or tPA alone groups at 24 h after stroke, which might also contribute to reduced microvascular thrombosis and neuroinflammation (as demonstrated by reduced neutrophil brain infiltration and microglial activation). Conclusion Our results demonstrate that J147 treatment alone exerts cerebral cytoprotective effects in a suture model of acute ischemic stroke, while in an embolic stroke model co-administration of J147 with tPA reduces delayed tPA-induced intracerebral hemorrhage and confers cerebroprotection. These findings suggest that J147-tPA combination therapy could be a promising approach to improving the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Min Wang
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Wei Zhong
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
| | | | | | - Guohong Li
- Department of Neurosurgery and Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA, United States
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
5
|
Pan X, Chen L, Xu W, Bao S, Wang J, Cui X, Gao S, Liu K, Avasthi S, Zhang M, Chen R. Activation of monoaminergic system contributes to the antidepressant- and anxiolytic-like effects of J147. Behav Brain Res 2021; 411:113374. [PMID: 34023306 DOI: 10.1016/j.bbr.2021.113374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
Major depressive disorder (MDD) is a severe mental disorder, which is closely related to the deficiency of monoamine neurotransmitters. Our previous study suggested that acute treatment with J147, a novel curcumin derivative, produced antidepressant-like effects in mouse model of depression by regulation of 5-HT receptor subtypes. However, it is still unknown whether the antidepressant-like effects of J147 are involved in activation of central monoaminergic system. In this study, a series of classical behavior tests were employed to assess the involvement of monoaminergic system in antidepressant- and anxiolytic-like effects after sub-acute treatment of mice with J147 for 3 days. The results suggested that J147 at 10 mg/kg significantly reduced the immobility time in both the tail suspension and forced swimming tests, but didn't show effects in the sucrose preference test. Similarly, sub-acute treatment of J147 did not induce amelioration in novelty suppressed feeding test. J147 increased duration and crossing time in the central area, but did not show significant change in rearing counts in the open field test. In neurochemical assays, studies suggested that serotonin and noradrenaline levels were significantly increased in the frontal cortex and hippocampus after treatment of J147 by the high-performance liquid chromatography (HPLC) with an electrochemical detector. Moreover, J147-induced significant inhibition of monoamine oxidase A activity. These findings suggest that the antidepressant- and anxiolytic-like effects of J147 might be related to the monoaminergic system by the evidence that high dose of J147 inhibits monoamine oxidase (MAO)-A activity and increases synaptic monoamines in the mouse brain.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Chen
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Wang
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Cui
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shichao Gao
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kaiping Liu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shivani Avasthi
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Meixi Zhang
- Pingyang Hospital of Traditional Chinese Medicine, Pingyang, China.
| | - Ruijie Chen
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Wan Y, Liang Y, Liang F, Shen N, Shinozuka K, Yu JT, Ran C, Quan Q, Tanzi RE, Zhang C. A Curcumin Analog Reduces Levels of the Alzheimer's Disease-Associated Amyloid-β Protein by Modulating AβPP Processing and Autophagy. J Alzheimers Dis 2020; 72:761-771. [PMID: 31640096 DOI: 10.3233/jad-190562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease with no cure currently available. A pathological hallmark of AD is accumulation and deposition of amyloid-β protein (Aβ), a ∼4 kDa peptide generated through serial cleavage of the amyloid-β protein precursor (AβPP) by β- and γ-secretases. Curcumin is a natural compound primarily found in the widely used culinary spice, turmeric, which displays therapeutic potential for AD. Recently, we reported the development of curcumin analogs and identified a lead compound, curcumin-like compound-R17 (CLC-R17), that significantly attenuates Aβ deposition in an AD transgenic mouse model. Here, we elucidated the mechanisms of this analog on Aβ levels and AβPP processing using cell models of AD. Using biochemical methods and our recently developed nanoplasmonic fiber tip probe technology, we showed that the lead compound potently lowers Aβ levels in conditioned media and reduces oligomeric amyloid levels in the cells. Furthermore, like curcumin, the lead compound attenuates the maturation of AβPP in the secretory pathway. Interestingly, it upregulated α-secretase processing of AβPP and inhibited β-secretase processing of AβPP by decreasing BACE1 protein levels. Collectively, our data reveal mechanisms of a promising curcumin analog in reducing Aβ levels, which strongly support its development as a potential therapeutic for AD.
Collapse
Affiliation(s)
- Yu Wan
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Rowland Institute at Harvard University, Cambridge, MA, USA
| | - Nolan Shen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kenneth Shinozuka
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Qimin Quan
- Rowland Institute at Harvard University, Cambridge, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
7
|
Lian L, Xu Y, Zhang J, Yu Y, Zhu N, Guan X, Huang H, Chen R, Chen J, Shi G, Pan J. Antidepressant-like effects of a novel curcumin derivative J147: Involvement of 5-HT 1A receptor. Neuropharmacology 2018; 135:506-513. [PMID: 29626566 DOI: 10.1016/j.neuropharm.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Depression is a dysthymia disorder characterized by a pervasive or persistent mental disorder that causes mood, cognitive and memory deficits. J147, a curcumin analogue, increases brain derived neurotrophic factor (BDNF) levels and facilitates memory in animals. Because curcumin has the antidepressant-like activity, the present study investigated the potential antidepressant-like effects of J147 in the forced swimming test (FST) and tail suspension tests (TST) and the involvement of 5-HT receptors related to cAMP signaling. The results suggested that acute treatment of J147 at doses of 5 and 10 mg/kg via gavage markedly reduced the duration of immobility in both TST and FST, either 1 h or 3 h after treatment, respectively. It did not alter locomotor activity but influence the immobile response. The molecular biological assays showed that 5-HT1A receptor expression was significantly increased at 1 h after treatment with J147 at a dose of 10 mg/kg. In addition, pre-treatment of mice with WAY-100635 blocked the J147's effect in the FST. 5-HT1B receptor expression was not significantly increased with increasing doses of J147. The 5-HT1B receptors antagonist isamoltan partially prevented J147's effect in the FST. The levels of downstream molecular targets, cAMP, PKA, pCREB and BDNF were significantly increased 1 h after treatment with J147 at doses of 5 and 10 mg/kg. The up-regulated pCREB and BDNF levels lasted for 3 h after 10 mg/kg of J147. These findings demonstrated that J147 has antidepressant-like effects that are mediated, at least in part, by activating the 5-HT1A/cAMP/PKA/CREB/BDNF-signaling pathway.
Collapse
Affiliation(s)
- Lejing Lian
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ying Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jianbo Zhang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingcong Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Clinical Institute of Gastroenterology, Zhejiang University, Zhejiang Province, 310016, China
| | - Naping Zhu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaofei Guan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Huang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Chen
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guilan Shi
- Zibo Vocational Institute, Zibo, Shandong Province, 255000, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
A Potent Multi-functional Neuroprotective Derivative of Tetramethylpyrazine. J Mol Neurosci 2015; 56:977-987. [DOI: 10.1007/s12031-015-0566-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/14/2015] [Indexed: 11/26/2022]
|
9
|
Prior M, Chiruta C, Currais A, Goldberg J, Ramsey J, Dargusch R, Maher PA, Schubert D. Back to the future with phenotypic screening. ACS Chem Neurosci 2014; 5:503-13. [PMID: 24902068 DOI: 10.1021/cn500051h] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There are no disease-modifying drugs for any old age associated neurodegenerative disease or stroke. This is at least in part due to the failure of drug developers to recognize that the vast majority of neurodegenerative diseases arise from a confluence of multiple toxic insults that accumulate during normal aging and interact with genetic and environmental risk factors. Thus, it is unlikely that the current single target approach based upon rare dominant mutations or even a few preselected targets is going to yield useful drugs for these conditions. Therefore, the identification of drug candidates for neurodegeneration should be based upon their efficacy in phenotypic screening assays that reflect the biology of the aging brain, not a single, preselected target. It is argued here that this approach to drug discovery is the most likely to produce safe and effective drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marguerite Prior
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Chandramouli Chiruta
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Antonio Currais
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Josh Goldberg
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Justin Ramsey
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Richard Dargusch
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Pamela A. Maher
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - David Schubert
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| |
Collapse
|
10
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Lapchak PA, Bombien R, Rajput PS. J-147 a Novel Hydrazide Lead Compound to Treat Neurodegeneration: CeeTox ™ Safety and Genotoxicity Analysis. ACTA ACUST UNITED AC 2013; 4. [PMID: 25364619 PMCID: PMC4215638 DOI: 10.4172/2155-9562.1000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
J-147 is a broad spectrum neuroprotective phenyl hydrazide compound with significant neurotrophic properties related to the induction of brain-derived neurotrophic factor (BDNF). Because this molecule is pleiotropic, it may have substantial utility in the treatment of a wide range of neurodegenerative diseases including acute ischemic stroke (AIS), traumatic brain injury(TBI), and Alzheimer’s disease(AD) where both neuroprotection and neurotrophism would be beneficial. Because of the pleiotropic actions of J-147, we sought to determine the safety profile of the drug using multiple assay analysis. For CeeTox analyses, we used a rat hepatoma cell line (H4IIE) resulted in estimated CTox value (i.e.: sustained concentration expected to produce toxicity in a 14 day repeat dosing study) of 90 μM for J-147. The CeeTox panel shows that J-147 produced some adverse effects on cellular activities, in particular mitochondrial function, but only with high concentrations of the drug. J-147 was also not genetoxic with or without Aroclor-1254 treatment. For J-147, based upon extensive neuroprotection assay data previously published, and the CeeTox assay (CTox value of 90 μM) in this study, we estimated in vitro neuroprotection efficacy (EC50 range 0.06–0.115 μM)/toxicity ratio is 782.6–1500 fold and the neurotrophism (EC50 range 0.025 μM)/toxicity ratio is 3600, suggesting that there is a significant therapeutic safety window for J-147 and that it should be further developed as a novel neuroprotective-neurotrophic agent to treat neurodegenerative disease taking into account current National Institute of Neurological Disorders and Stroke (NINDS) RIGOR guidelines.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Rene Bombien
- Division of Cardiothoracic Surgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Padmesh S Rajput
- Department of Neurology, Advanced Health Sciences Pavilion, Los Angeles, USA
| |
Collapse
|