1
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Takemoto JY, Altenberg GA, Poudyal N, Subedi YP, Chang CWT. Amphiphilic aminoglycosides: Modifications that revive old natural product antibiotics. Front Microbiol 2022; 13:1000199. [PMID: 36212866 PMCID: PMC9537547 DOI: 10.3389/fmicb.2022.1000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Widely-used Streptomyces-derived antibacterial aminoglycosides have encountered challenges because of antibiotic resistance and toxicity. Today, they are largely relegated to medicinal topical applications. However, chemical modification to amphiphilic aminoglycosides can revive their efficacy against bacterial pathogens and expand their targets to other pathogenic microbes and disorders associated with hyperactive connexin hemichannels. For example, amphiphilic versions of neomycin and neamine are not subject to resistance and have expanded antibacterial spectra, and amphiphilic kanamycins are effective antifungals and have promising therapeutic uses as connexin hemichannel inhibitors. With further research and discoveries aimed at improved formulations and delivery, amphiphilic aminoglycosides may achieve new horizons in pharmacopeia and agriculture for Streptomyces aminoglycosides beyond just serving as topical antibacterials.
Collapse
Affiliation(s)
- Jon Y. Takemoto
- Department of Biology, Utah State University, Logan, UT, United States
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Yagya P. Subedi
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
- *Correspondence: Cheng-Wei T. Chang,
| |
Collapse
|
3
|
Modak B, Girkar S, Narayan R, Kapoor S. Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. J Med Chem 2022; 65:3046-3065. [PMID: 35133820 DOI: 10.1021/acs.jmedchem.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases remain significant health concerns worldwide, and resistance is particularly common in patients with tuberculosis caused by Mycobacterium tuberculosis. The development of anti-infectives with novel modes of action may help overcome resistance. In this regard, membrane-active agents, which modulate membrane components essential for the survival of pathogens, present attractive antimicrobial agents. Key advantages of membrane-active compounds include their ability to target slow-growing or dormant bacteria and their favorable pharmacokinetics. Here, we comprehensively review recent advances in the development of membrane-active chemotypes that target mycobacterial membranes and discuss clinically relevant membrane-active antibacterial agents that have shown promise in counteracting bacterial infections. We discuss the relationship between the membrane properties and the synthetic requirements within the chemical scaffold, as well as the limitations of current membrane-active chemotypes. This review will lay the chemical groundwork for the development of membrane-active antituberculosis agents and will foster the discovery of more effective antitubercular agents.
Collapse
Affiliation(s)
- Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Siddhali Girkar
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
4
|
Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol Aspects Med 2021; 81:100999. [PMID: 34325929 DOI: 10.1016/j.mam.2021.100999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections.
Collapse
|
5
|
Jaber QZ, Fridman M. Fresh Molecular Concepts to Extend the Lifetimes of Old Antimicrobial Drugs. CHEM REC 2021; 21:631-645. [PMID: 33605532 DOI: 10.1002/tcr.202100014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Antimicrobial drug development generally initiates with target identification and mode of action studies. Often, emergence of resistance and/or undesired side effects that are discovered only after prolonged clinical use, result in discontinuation of clinical use. Since the cost and time required for improvement of existing drugs are considerably lower than those required for the development of novel drugs, academic and pharmaceutical company researchers pursue this direction. In this account we describe selected examples of how chemical probes generated from antimicrobial drugs and chemical and enzymatic modifications of these drugs have been used to modify modes of action, block mechanisms of resistance, or reduce side effects, improving performance. These examples demonstrate how new and comprehensive mechanistic insights can be translated into fresh concepts for development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
6
|
Aradi K, Di Giorgio A, Duca M. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry 2020; 26:12273-12309. [PMID: 32539167 DOI: 10.1002/chem.202002258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Indexed: 01/04/2023]
Abstract
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.
Collapse
Affiliation(s)
- Klara Aradi
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| |
Collapse
|
7
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
8
|
Abstract
The rise of antibiotic resistant bacteria requires unconventional strategies toward efficient chemotherapeutic agents, preferably with alternative mechanisms of action. The bacterial cell membrane has become an appealing target since its essential and highly conservative structure are key challenges to resistance mechanisms. Inspired by natural antimicrobial peptides, research on membrane-targeting antimicrobials has been growing out of the peptide space. The pursuit of more druggable molecules led to the discovery that the pharmacophore of antimicrobial peptides is smaller than anticipated. Several promising classes of membrane-targeting antimicrobials have been discovered, such as ceragenins, reutericyclines, carbohydrate amphiphiles - among others. This review will discuss the most recent findings on membrane-targeting antibiotics, focusing on small molecules outside the antimicrobial peptide molecular space.
Collapse
|
9
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
10
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
11
|
Ghosh C, Konai MM, Sarkar P, Samaddar S, Haldar J. Designing Simple Lipidated Lysines: Bifurcation Imparts Selective Antibacterial Activity. ChemMedChem 2016; 11:2367-2371. [DOI: 10.1002/cmdc.201600400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Chandradhish Ghosh
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru; 560064 Karnataka India
| | - Mohini Mohan Konai
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru; 560064 Karnataka India
| | - Paramita Sarkar
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru; 560064 Karnataka India
| | - Sandip Samaddar
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru; 560064 Karnataka India
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru; 560064 Karnataka India
| |
Collapse
|
12
|
Joseph R, Naugolny A, Feldman M, Herzog IM, Fridman M, Cohen Y. Cationic Pillararenes Potently Inhibit Biofilm Formation without Affecting Bacterial Growth and Viability. J Am Chem Soc 2016; 138:754-7. [PMID: 26745311 DOI: 10.1021/jacs.5b11834] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is estimated that up to 80% of bacterial infections are accompanied by biofilm formation. Since bacteria in biofilms are less susceptible to antibiotics than are bacteria in the planktonic state, biofilm-associated infections pose a major health threat, and there is a pressing need for antibiofilm agents. Here we report that water-soluble cationic pillararenes differing in the quaternary ammonium groups efficiently inhibited the formation of biofilms by clinically important Gram-positive pathogens. Biofilm inhibition did not result from antimicrobial activity; thus, the compounds should not inhibit growth of natural bacterial flora. Moreover, none of the cationic pillararenes caused detectable membrane damage to red blood cells or toxicity to human cells in culture. The results indicate that cationic pillararenes have potential for use in medical applications in which biofilm formation is a problem.
Collapse
Affiliation(s)
- Roymon Joseph
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Alissa Naugolny
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Mark Feldman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Ido M Herzog
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Mingeot-Leclercq MP, Décout JL. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00503e] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Membrane anionic lipids as attractive targets in the design of amphiphilic antibacterial drugs active against resistant bacteria: molecular foundations and examples.
Collapse
Affiliation(s)
- Marie-Paule Mingeot-Leclercq
- Louvain Drug Research Institute
- Université catholique de Louvain
- Unité de Pharmacologie Cellulaire et Moléculaire
- Brussels
- Belgium
| | - Jean-Luc Décout
- Département de Pharmacochimie Moléculaire
- Université Grenoble Alpes/CNRS
- UMR 5063
- ICMG FR 2607
- F-38041 Grenoble
| |
Collapse
|
14
|
Shaul P, Benhamou RI, Herzog IM, Louzoun Zada S, Ebenstein Y, Fridman M. Synthesis and evaluation of membrane permeabilizing properties of cationic amphiphiles derived from the disaccharide trehalose. Org Biomol Chem 2016; 14:3012-5. [DOI: 10.1039/c6ob00031b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cationic amphiphiles derived from trehalose have been synthesized; trehalose analogues substituted withn-pentyl orn-hexyl ethers exhibited membrane disrupting activities against clinically important Gram positive and Gram negative bacteria and fungi.
Collapse
Affiliation(s)
- P. Shaul
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - R. I. Benhamou
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - I. M. Herzog
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - S. Louzoun Zada
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Y. Ebenstein
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - M. Fridman
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
15
|
Bera S, Mondal D, Palit S, Schweizer F. Structural modifications of the neomycin class of aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00079g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review encompasses comprehensive literature on synthetic modification and biological activities of clinically used neomycin-class aminoglycoside antibiotics to alleviate dose-related toxicity and pathogenic resistance.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Dhananjoy Mondal
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology Campus
- Kolkata-700 032
- India
| | - Frank Schweizer
- Department of Chemistry and Medical Microbiology
- University of Manitoba
- Winnipeg
- Canada
| |
Collapse
|
16
|
Benhamou RI, Shaul P, Herzog IM, Fridman M. Di-N-Methylation of Anti-Gram-Positive Aminoglycoside-Derived Membrane Disruptors Improves Antimicrobial Potency and Broadens Spectrum to Gram-Negative Bacteria. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Benhamou RI, Shaul P, Herzog IM, Fridman M. Di-N-Methylation of Anti-Gram-Positive Aminoglycoside-Derived Membrane Disruptors Improves Antimicrobial Potency and Broadens Spectrum to Gram-Negative Bacteria. Angew Chem Int Ed Engl 2015; 54:13617-21. [DOI: 10.1002/anie.201506814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 11/12/2022]
|
18
|
Gorityala BK, Guchhait G, Schweizer F. Amphiphilic Aminoglycoside Antimicrobials in Antibacterial Discovery. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amphiphilic aminoglycoside antimicrobials (AAAs) are an emerging class of polycationic antibacterial agents with broad-spectrum antibacterial activity. In contrast to aminoglycosides, which interfere with protein synthesis by interacting with the 30S ribosomal subunit, AAAs appear to target the bacterial cell wall by interactions with extracellular lipids or proteins or by enhancing the permeability of the bacterial cell wall. The physicochemical similarities between amphiphilic aminoglycosides and antimicrobial peptides, another class of polycationic amphiphiles with broad-spectrum antibacterial activity, suggest similar mode(s) of action. However, in contrast to antimicrobial peptides, AAAs are not composed of peptide bonds and as such promise to display superior metabolic stability. As a result, AAAs may be considered to be a novel class of antimicrobial peptidomimetics. Many AAAs possess impressive potent antibacterial activity against Gram-positive and Gram-negative bacteria, especially against bacterial strains that are resistant to clinically used antibiotics. In summary, AAAs promise to provide a new and rich source of antibacterial lead structures to combat antibiotic-resistant and multidrug-resistant pathogens.
Collapse
Affiliation(s)
| | - Goutam Guchhait
- Department of Chemistry, University of Manitoba Winnipeg, MB R3T 2N2 Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
19
|
Berkov-Zrihen Y, Herzog IM, Benhamou RI, Feldman M, Steinbuch KB, Shaul P, Lerer S, Eldar A, Fridman M. Tobramycin and Nebramine as Pseudo-oligosaccharide Scaffolds for the Development of Antimicrobial Cationic Amphiphiles. Chemistry 2015; 21:4340-9. [DOI: 10.1002/chem.201406404] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/31/2022]
|
20
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
21
|
Dehsorkhi A, Castelletto V, Hamley IW. Self-assembling amphiphilic peptides. J Pept Sci 2014; 20:453-67. [PMID: 24729276 PMCID: PMC4237179 DOI: 10.1002/psc.2633] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 01/08/2023]
Abstract
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined.
Collapse
Affiliation(s)
- Ashkan Dehsorkhi
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Valeria Castelletto
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
22
|
Herzog IM, Fridman M. Design and synthesis of membrane-targeting antibiotics: from peptides- to aminosugar-based antimicrobial cationic amphiphiles. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00012a] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections caused by drug resistant and/or slow-growing bacteria are increasingly becoming some of the greatest challenges of health organizations worldwide.
Collapse
Affiliation(s)
- Ido M. Herzog
- School of Chemistry
- Raymond and Beverley Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Micha Fridman
- School of Chemistry
- Raymond and Beverley Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
23
|
Berkov-Zrihen Y, Herzog IM, Feldman M, Fridman M. Site-Selective Displacement of Tobramycin Hydroxyls for Preparation of Antimicrobial Cationic Amphiphiles. Org Lett 2013; 15:6144-7. [DOI: 10.1021/ol4030138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yifat Berkov-Zrihen
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido M. Herzog
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mark Feldman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|