1
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
2
|
AbdelRazek MMM, Elissawy AM, Mostafa NM, Moussa AY, Elshanawany MA, Singab ANB. Bioactive secondary metabolites from fungal endophytes, Penicillium oxalicum and Phoma herbarum, associated with Morus nigra and Ficus sycomorus: an in silico study. RSC Adv 2024; 14:36451-36460. [PMID: 39545166 PMCID: PMC11562029 DOI: 10.1039/d4ra06840h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Two pure fungal strains were isolated and identified from Ficus sycomorus and Morus nigra, namely, Penicillium oxalicum (OR673586) and Phoma herbarum (OR673589), respectively. The extract and fractions of secondary metabolites of each fungus were evaluated for antioxidant, anti-inflammatory, antimicrobial, antibiofilm, antidiabetic, and cytotoxic activities. The chloroform fraction of P. oxalicum showed potent cytotoxic activity (IC50 = 7.695 μg mL-1) against Hep-G2 cell line, alongside moderate antioxidant and anti-inflammatory activities. On the other hand, the P. herbarum chloroform fraction showed potent antioxidant (DPPH IC50 = 5.649 μg mL-1) and antidiabetic activities (IC50 = 14.91 μg mL-1) against inhibition of α-glucosidase, in addition to moderate cytotoxicity, anti-inflammatory, and antimicrobial activities. Guided cytotoxic fractionation leads to identifying bioactive compounds using hyphenated techniques. LC-MS identified fourteen compounds for P. herbarum and thirteen compounds for P. oxalicum. Three known compounds, mevalolactone (1), glycerol monolinoleate (3), and ergosterol (7) in addition to one new compound, barcelonyl acetate (2), were isolated from P. herbarum. On the other hand, four known compounds, 4-hydroxyphenyl acetic acid (4), secalonic acid D (5), altersolanol A (6), and ergosterol (7), were isolated from P. oxalicum. Altersolanol A (6) and secalonic acid D (7) exhibited outstanding cytotoxic activity against Hep-G2 and Caco-2 cell lines, with IC50 values ranging from 0.00038 to 0.208 μM. In silico study findings showed altersolanol A (6), 4-hydroxyphenyl acetic acid (4), glycerol monolinoleate (3), and barcelonyl acetate (2) displayed significant potential but may benefit from further optimization as lead for developing potent c-Jun N-terminal kinase 2 (JNK2, PDB: 3NPC) inhibitors, potentially leading to novel therapeutic strategies targeting cancer therapy.
Collapse
Affiliation(s)
- Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC) Cairo 11829 Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain Shams University Cairo 11566 Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Mohamed A Elshanawany
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC) Cairo 11829 Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
3
|
Vishwakarma S, Chaudhry V, Chand S, Sagar K, Gupta KK, Bhardwaj N, Prasad R, Kumar P, Chandra H. The Potential of Fungal Endophytes in Plants: Sources of Bioactive Compounds. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
|
4
|
Tsakem B, Tchamgoue J, Kinge RT, Tiani GLM, Teponno RB, Kouam SF. Diversity of African fungi, chemical constituents and biological activities. Fitoterapia 2024; 178:106154. [PMID: 39089594 DOI: 10.1016/j.fitote.2024.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Besides plants and animals, the fungal kingdom consists of several species characterized by various forms and applications. Fungi are amazing producers of bioactive natural products with applications in medicine and agriculture. Though this kingdom has been extensively investigated worldwide, it remains relatively underexplored in Africa. To address the knowledge gaps, encourage research interest, and suggest opportunities for the discovery of more bioactive substances from African fungi, we considered it appropriate to extensively review the research work carried out on African fungi since 1988. This review summarizes the diversity and distribution of fungi throughout Africa, the secondary metabolites yet reported from studied fungi, their biological activities and, the countries where they were collected. The studied fungi originated from eleven African countries and were mainly endophytic fungi and higher fungi (macrofungi). Their investigation led to the isolation of five hundred and three (503) compounds with polyketides representing the main class of secondary metabolites. The compounds exhibited varied biological activities with antibacterial and antiproliferative properties being the most prominent.
Collapse
Affiliation(s)
- Bienvenu Tsakem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Joseph Tchamgoue
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Rosemary Tonjock Kinge
- Department of Plant Sciences, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Cameroon
| | - Gesqiere Laure M Tiani
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Fundamental Science, University Institute for Wood Technology Mbalmayo, P.O. Box 306, Mbalmayo, Cameroon
| | - Rémy Bertrand Teponno
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| |
Collapse
|
5
|
Gu T, Wen Y, Zhou Q, Yuan W, Guo H, Chang WL, Yang Q. Fungal metabolite altersolanol a exhibits potent cytotoxicity against human placental trophoblasts in vitro via mitochondria-mediated apoptosis. Mycotoxin Res 2024; 40:419-432. [PMID: 38717551 DOI: 10.1007/s12550-024-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 04/29/2024] [Indexed: 07/19/2024]
Abstract
Altersolanol A, a fungus-derived tetrahydroanthraquinone, has shown cytotoxic effects on multiple cancer cells. However, its reproductive toxicity in humans has not been well-addressed. The present study was aimed at investigating the cytotoxicity of altersolanol A on human placental trophoblasts including choriocarcinoma cell line JEG-3 and normal trophoblast cell line HTR-8/SVneo in vitro. The results showed that altersolanol A inhibited proliferation and colony formation of human trophoblasts, and the choriocarcinoma cells were more sensitive to the compound than the normal trophoblasts. Altersolanol A induced cell cycle arrest at G2/M phase in JEG-3 cells and S phase in HTR-8/SVneo cells, downregulated the expression of cell cycle-related checkpoint proteins, and upregulated the p21 level. Altersolanol A also promoted apoptosis in human trophoblasts via elevating the Bax/Bcl-2 ratio and decreasing both caspase-3 and caspase-9 levels. Meanwhile, altersolanol A suppressed the mitochondrial membrane potential and induced ROS production and cytochrome c release, which activated the mitochondria-mediated intrinsic apoptosis. Moreover, migration and invasion were inhibited upon altersolanol A exposure with downregulation of matrix metalloproteinase (MMP)-2 in JEG-3 cells and MMP-9 in HTR-8/SVneo cells. Mechanically, altersolanol A supplement decreased the phosphorylation of JNK, ERK, and p38, manifesting the inactivation of MAPK signaling pathway in the human trophoblasts. In conclusion, altersolanol A exhibited potential reproductive cytotoxicity against human trophoblasts via promoting mitochondrial-mediated apoptosis and inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Ting Gu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuting Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and , Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518036, China
| | - Haichun Guo
- Changsha Hospital for Maternal & Child Health Care of Hunan Normal University, Changsha, 410007, China
| | - Wen-Lin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518036, China.
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Diaz CE, Andres MF, Lacret R, Cabrera R, Gimenez C, Kaushik N, Gonzalez-Coloma A. Antifeedant, antifungal and nematicidal compounds from the endophyte Stemphylium solani isolated from wormwood. Sci Rep 2024; 14:13500. [PMID: 38867066 PMCID: PMC11169264 DOI: 10.1038/s41598-024-64467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
The continuous search for natural product-based biopesticides from fungi isolated from untapped sources is an effective tool. In this study, we studied a pre-selected fungal endophyte, isolate Aa22, from the medicinal plant Artemisia absinthium, along with the antifungal, insect antifeedant and nematicidal compounds present in the extract. The endophyte Aa22 was identified as Stemphylium solani by molecular analysis. The antifungal activity was tested by broth microdilution against Fusarium solani, F. oxysporum, F. moniliforme and Botrytis cinerea, the insect antifeedant by choice bioassays against Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi and the in vitro mortality against the root-knot nematode Meloiydogyne javanica. The structures of bioactive compounds were determined on the basis of 1D and 2D NMR spectroscopy and mass spectrometry. The ethyl acetate extract obtained from the solid rice fermentation showed mycelial growth inhibition of fungal pathogens (EC50 0.08-0.31 mg/mL), was antifeedant to M. persicae (99%) and nematicidal (68% mortality). A bioguided fractionation led to the isolation of the new compound stempholone A (1), and the known stempholone B (2) and stemphol (3). These compounds exhibited antifeedant (EC50 0.50 mg/mL), antifungal (EC50 0.02-0.43 mg/L) and nematicidal (MLD 0.5 mg/mL) activities. The extract activities can be explained by 3 (antifungal), 1-3 (antifeedant) and 1 (nematicidal). Phytotoxicity tests on Lolium perenne and Lactuca sativa showed that the extract and 1 increased L. sativa root growth (121-130%) and 1 reduced L. perenne growth (48-49%). These results highlight the potential of the endophytic fungi Aa22 as biotechnological source of natural product-based biopesticides.
Collapse
Affiliation(s)
- Carmen E Diaz
- Instituto de Productos Naturales, y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206, La Laguna, Tenerife, Spain
| | - Maria Fe Andres
- Instituto de Ciencias Agrarias, Consejo Superrior de Investigaciones Cientificas, Serrano 115, 28006, Madrid, Spain
| | - Rodney Lacret
- Instituto de Ciencias Agrarias, Consejo Superrior de Investigaciones Cientificas, Serrano 115, 28006, Madrid, Spain
| | | | | | - Nutan Kaushik
- The Amity Food and Agriculture Foundation, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Azucena Gonzalez-Coloma
- Instituto de Ciencias Agrarias, Consejo Superrior de Investigaciones Cientificas, Serrano 115, 28006, Madrid, Spain.
| |
Collapse
|
7
|
Amtaghri S, Slaoui M, Eddouks M. Mentha Pulegium: A Plant with Several Medicinal Properties. Endocr Metab Immune Disord Drug Targets 2024; 24:302-320. [PMID: 37711001 DOI: 10.2174/1871530323666230914103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The species Mentha Pulegium L. (M. pulegium L.) belongs to the family Lamiaceae, native to Europe, North Africa, and the Middle East, and the genus Mentha. It has been traditionally used in food, cosmetics, and medicines. It is a perennial, fragrant, well-liked, herbaceous plant that can grow up to half a meter tall. It is extensively used as a food flavoring, particularly for Moroccan traditional drinks. Chewing mint and M. pulegium, a relaxing and refreshing plant, can be used to treat hiccups and act as an anticonvulsant and nerve relaxant. Pennyroyal leaves that have been crushed have a pungent, spearmint-like scent. Pennyroyal is used to make herbal teas, which, while not proven to be harmful to healthy adults in small doses, are not recommended due to their liver toxicity. Infants and children can die if they consume it. Pennyroyal leaves, both fresh and dried, are particularly effective at repelling insects. Pennyroyal essential oil should never be taken internally because it is highly toxic, even in small doses, it can be fatal. This plant is used in traditional Moroccan medicine to treat a wide range of conditions, including influenza, rheumatism, migraine, infertility, ulcer, pain, gastrointestinal problems, fever, diabetes, obesity, mental and cardiac disorders, constipation, respiratory ailments, and cough. M. pulegium is a great candidate for contemporary therapeutic usage since it contains a wide variety of biologically active compounds, including terpenoids, flavonoids, alkaloids, tannins, and saponins in all its parts. Among the different parts used are the whole plant, the aerial part, the stem, and the leaves. More interestingly, the entire plant contains a variety of compounds including Pulegone, Isomenthone, Carvone, Menthofuran, Menthol, 1,8-Cineole, Piperitone, Piperitenone, Neomenthol, -humulene, and 3-octanol. Eriocitrin, Hesperidin, Narirutin, Luteolin, Isorhoifolin, Galic acid, and Rosmarinic acid are found in the leaves. p-hydroxybenzoic acid, Ferulic acid, Caffeic acid, Vanillic acid, Syringic acid, Protocatechuic acid, Cinnamic acid, Phloretic acid, o-coumaric acid, p-coumaric acid, Catechin, Epicatechin, Chrysin, Quercetin, Naringenin, Carvacrol are all found in the areal part. Alterporriol G, Atropisomer, Alterporriol H, Altersolanol K, Altersolanol L, Stemphypyrone, 6-O-methylalaternin, Macrosporin, Altersolanol A, Alterporriol E, Alterporriol D, Alterporriol A, Alterporriol B, and Altersolanol J are also found in the stem of fungus. Pulegone, Piperitone, p-Menthane-1,2,3- triol, β-elemenene, guanine (cis-), Carvacrol acetate, and Phenyl ethyl alcohol are all components of this plant's essential oils. Moreover, the study also sought to investigate and document all currently available evidence and information on the nutritional composition and therapeutic uses of this plant ornamental. Its pharmacological applications include antimicrobial, antioxidant, antihypertensive, antidiabetic, anti-inflammatory, antiproliferative, antifungal, anticancer, burn wound healing, antispasmodic, and hepatotoxicity. Finally, toxicological studies have revealed that while low doses of extracts of the plant M. pulegium are not toxic, however, its essential oils of it are extremely toxic. In order to evaluate future research needs and investigate its pharmacological applications through clinical trials, the current assessment focuses on the distribution, chemical composition, biological activities, and primary uses of the plant.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team, Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team, Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
8
|
Chen Y, Pang X, He Y, Lin X, Zhou X, Liu Y, Yang B. Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities. J Fungi (Basel) 2022; 8:1043. [PMID: 36294608 PMCID: PMC9604832 DOI: 10.3390/jof8101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
9
|
A Review on Medicinal Plants Having Anticancer Properties of Northeast India and Associated Endophytic Microbes and their Future in Medicinal Science. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human beings are affected by different diseases and suffer to different extents. Cancer is one of the major human disease and millions of people suffered from cancer and end their lives every year. Peoples are dependent on herbal medicines since prehistoric time especially from developing countries. It is very common to have different side effects of modern synthetic medicines; hence now-a-days importance of herbal medicines due to no or least side effects increases all parts of the world. But the major problems of using herbal medicines are that plants can produce very limited amount of medicinally important bioactive metabolites and they have very long growth periods. Therefore endophytes are the excellent alternative of plant derived metabolites. Endophytic microbes can synthesize exactly same type of metabolites as the plant produces. North East India is a treasure of plant resources; various types of medicinal plants are present in this region. Different types of indigenous tribes are inhabited in this region who used different plants in traditional system for treating various disease. But with increasing demand it is sometimes not sufficient to manage the demand of medicines, therefore for massive production endophytic study is crucial. In spite of having huge plant resources very limited endophytic studies are observed in this region. In this review, we studied different plants with their endophytes of NE India showing anticancer properties.
Collapse
|
10
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Shakour ZT, Farag MA. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives. J Adv Res 2022; 39:257-273. [PMID: 35660073 PMCID: PMC9263761 DOI: 10.1016/j.jare.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite, a large number of bioactive anthraquinones (AQs) isolated from host-living fungi, only plant-derived AQs were introduced in the global consumer markets. Host-living fungi represents renewable and extendible resources of diversified metabolites to be exploited for bioactives production. Unique classes of AQs from fungi include halogenated and steroidal AQs, and absent from planta are of potential to explore for biological activity against urging diseases such as cancer and multidrug-resistant pathogens. The structural diversity of fungal AQs, monomers, dimers, trimers, halogenated, etc… results in a vast range of pharmacological activities. AIM OF REVIEW The current study capitalizes on uncovering the diversity and distribution of host-living fungal systems producing AQs in different terrestrial ecosystems ranging from plant endophytes, lichens, animals and insects. Furthermore, the potential bioactivities of fungal derived AQs i.e., antibacterial, antifungal, antiviral (anti-HIV), anticancer, antioxidant, diuretic and laxative activities are assembled in relation to their structure activity relationship (SAR). Analyzing for structure-activity relationship among fungal AQs may facilitate bioengineering of more potential analogues. Withal, elucidation of AQs biosynthetic pathways in fungi is discussed from different fungal hosts to open up new possibilities for potential biotechnological applications. Such comprehensive review unravels terrestrial host-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries. KEY SCIENTIFIC CONCEPTS OF REVIEW Such comprehensive review unravels terrestrialhost-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
12
|
Siraj MA, Jacobs AT, Tan GT. Altersolanol B, a fungal tetrahydroanthraquinone, inhibits the proliferation of estrogen receptor-expressing (ER+) human breast adenocarcinoma by modulating PI3K/AKT, p38/ERK MAPK and associated signaling pathways. Chem Biol Interact 2022; 359:109916. [DOI: 10.1016/j.cbi.2022.109916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
|
13
|
Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, Hu Y. Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. J Fungi (Basel) 2022; 8:205. [PMID: 35205959 PMCID: PMC8877053 DOI: 10.3390/jof8020205] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Plant-associated fungi (endophytic fungi) are a biodiversity-rich group of microorganisms that are normally found asymptomatically within plant tissues or in the intercellular spaces. Endophytic fungi promote the growth of host plants by directly producing secondary metabolites, which enhances the plant's resistance to biotic and abiotic stresses. Additionally, they are capable of biosynthesizing medically important "phytochemicals" that were initially thought to be produced only by the host plant. In this review, we summarized some compounds from endophyte fungi with novel structures and diverse biological activities published between 2011 and 2021, with a focus on the origin of endophytic fungi, the structural and biological activity of the compounds they produce, and special attention paid to the exploration of pharmacological activities and mechanisms of action of certain compounds. This review revealed that endophytic fungi had high potential to be harnessed as an alternative source of secondary metabolites for pharmacological studies.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianchen Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Xie
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinan Ran
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.K.O.); (S.W.); (J.W.); (L.X.); (Y.R.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Shenzhen 518000, China
| |
Collapse
|
14
|
Hridoy M, Gorapi MZH, Noor S, Chowdhury NS, Rahman MM, Muscari I, Masia F, Adorisio S, Delfino DV, Mazid MA. Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules 2022; 27:296. [PMID: 35011527 PMCID: PMC8746379 DOI: 10.3390/molecules27010296] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. This comprehensive review includes the putative anticancer compounds from plant-derived endophytic fungi discovered from 1990 to 2020 with their source endophytic fungi and host plants as well as their antitumor activity against various cell lines.
Collapse
Affiliation(s)
- Md. Hridoy
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | | | - Sadia Noor
- Department of Pharmacy, University of Asia Pacific, Dhaka 1215, Bangladesh; (M.Z.H.G.); (S.N.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Isabella Muscari
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Francesco Masia
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Sabrina Adorisio
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Domenico V. Delfino
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Md. Abdul Mazid
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
15
|
Péter B, Boldizsár I, Kovács GM, Erdei A, Bajtay Z, Vörös A, Ramsden JJ, Szabó I, Bősze S, Horvath R. Natural Compounds as Target Biomolecules in Cellular Adhesion and Migration: From Biomolecular Stimulation to Label-Free Discovery and Bioactivity-Based Isolation. Biomedicines 2021; 9:1781. [PMID: 34944597 PMCID: PMC8698624 DOI: 10.3390/biomedicines9121781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Alexandra Vörös
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Jeremy J. Ramsden
- Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, UK;
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| |
Collapse
|
16
|
Ikram M, Ali N, Jan G, Jan FG, Khan N. Endophytic Fungal Diversity and their Interaction with Plants for Agriculture Sustainability Under Stressful Condition. Recent Pat Food Nutr Agric 2021; 11:115-123. [PMID: 31195952 DOI: 10.2174/2212798410666190612130139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
Endophytic fungi are an interesting group of organisms that colonize the healthy internal tissues of living plants, and do not cause any symptoms of disease in the host plants. Several decades of study and research have rustled the co-existing endophytes with their host plants, which can significantly influence the formation of metabolic products in plants, as they have the ability to produce a new interesting bioactive compound, which is of pharmaceutical, industrial and agricultural importance. Empirical evidences have indicated that endophytic fungi can confer profound impacts on plant communities by enhancing their growth, increasing their fitness, strengthening their tolerance to abiotic and biotic stresses, enhancing the defense mechanism and promoting the accumulation of secondary metabolites that provide immunity against pathogens. Many of these compounds are novel products and could be granted patents. Further, there are growing interests of multinational companies using these patents prepared in special formula to sell in international markets. This review addresses biodiversity and biological roles of endophytic fungi in association with their host plants through reviewing published research data obtained from the last 30 years and highlights their importance for plants, industry as well as ecosystem.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Niaz Ali
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Farzana G Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Naeem Khan
- Department of Plant Scienes, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Zuckerman DS, Woerpel KA. Synthesis of Enantiopure Triols from Racemic Baylis-Hillman Adducts Using a Diastereoselective Peroxidation Reaction. Org Lett 2020; 22:9075-9080. [PMID: 33141576 DOI: 10.1021/acs.orglett.0c03439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a chiral (-)-menthone auxiliary, enantiopure cyclic derivatives of Baylis-Hillman adducts were synthesized. A diastereoselective peroxidation reaction was used to introduce an oxygen atom and establish another stereocenter. The resulting products could be elaborated by employing a one-flask reduction-acetylation protocol followed by a diastereoselective nucleophilic substitution reaction. Removal of the (-)-menthone auxiliary provided an enantiopure triol with a structure related to naturally occurring polyols.
Collapse
Affiliation(s)
- Dylan S Zuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - K A Woerpel
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
18
|
Beck J, Fuhr O, Nieger M, Bräse S. A versatile Diels-Alder approach to functionalized hydroanthraquinones. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200626. [PMID: 33391783 PMCID: PMC7735338 DOI: 10.1098/rsos.200626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
The synthesis of highly substituted hydroanthraquinone derivatives with up to three stereogenic centres via a Diels-Alder reaction, starting from easily accessible 2-substituted naphthoquinones, is described. The [4+2]-cycloaddition is applicable for a broad range of substrates, runs under mild conditions and results in high yields. The highly regioselective outcome of the reactions is enabled by a benzoyl substituent at C2 of the dienophiles. The obtained hydroanthraquinones can be further modified and represent ideal substrates for follow-up intramolecular coupling reactions to create unique bicyclo[3.3.1] or -[3.2.2]nonane ring systems which are important natural product skeletons.
Collapse
Affiliation(s)
- Janina Beck
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT) and Karlsruhe Nano-Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), 00014 Helsinki, Finland
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Feng S, Wang W. Bioactivities and Structure-Activity Relationships of Natural Tetrahydroanthraquinone Compounds: A Review. Front Pharmacol 2020; 11:799. [PMID: 32536871 PMCID: PMC7267002 DOI: 10.3389/fphar.2020.00799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrahydroanthraquinones are a kind of important microbial secondary metabolites with promising biological activities. Most of them were found in microorganisms, a few were derived from Chinese herbal medicine. In this review, aiming to provide basis for the further research and development of tetrahydroanthraquinone compounds, we summarized the physiological activities of natural tetrahydroanthraquinone compounds, including anti-cancer, anti-microbial, and antidiabetic activities. The source, structure, and action mechanisms of active tetrahydroanthraquinones are described in detail. Furthermore, this review firstly analyzed the structure–activity relationship of tetrahydroanthraquinones. Our study will serve as a valuable guideline for further research on the structural optimization, mechanism study, and development of tetrahydroanthraquinone as novel drugs. Aiming to provide references for further studies and development of tetrahydroanthraquinone compounds.
Collapse
Affiliation(s)
- Shixiu Feng
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
20
|
Dalinova AA, Salimova DR, Berestetskiy AO. Fungi of the Genera Alternaria as Producers of Biological Active Compounds and Mycoherbicides. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Synthesis of Anthraquinones by Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of a 1,2-Bis(propiolyl)benzene Derivative with Alkynes. INORGANICS 2019. [DOI: 10.3390/inorganics7110138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[2 + 2 + 2] cycloaddition of a 1,2-bis(propiolyl)benzene derivative with terminal and internal alkynes takes place in the presence of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) combined with bis(diphenylphosphino)ethane (DPPE) to give anthraquinones in 42% to 93% yields with a simple experimental procedure. A fluorenone derivative can also be synthesized by iridium-catalyzed [2 + 2 + 2] cycloaddition of a benzene-linked ketodiyne with an internal alkyne to give a 94% yield.
Collapse
|
22
|
George TK, Devadasan D, Jisha MS. Chemotaxonomic profiling of Penicillium setosum using high-resolution mass spectrometry (LC-Q-ToF-MS). Heliyon 2019; 5:e02484. [PMID: 31687578 PMCID: PMC6819834 DOI: 10.1016/j.heliyon.2019.e02484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022] Open
Abstract
In the present study, secondary metabolites produced by an endophytic fungus Penicillium setosum were extracted using colony agar plug and culture broth extraction methods. High resolution LC-MS was used to explore the chemical nature of the secondary metabolites, as well, compare the reliability of the methods. P. setosum was chemotaxonomically distinguished from other members of section Lanata-divaricata, by its ability to produce mycotoxin, patulin and also by the presence of certain phenol-derived compounds, like quercetin, dihydroflavonols (dihydroquercetin and dihydromyricetin), kaempferol, luteolin, while some Penicillium specific compounds such as, citromycetin and andrastin D reveal its similarity towards section Lanata-Divaricata members. For the first time, the presence of dihydroquercetin is remarkably and spectrometrically confirmed from a microbial source. In addition, a few polyketides, anthroquinone compounds, hydrocarbons, and fatty acids were also detected in the culture extract. Being the first report on the production of polyphenolic compounds by an endophytic fungus of Penicillium species, the current research is crucial, and moreover the starin itself is a novel species.
Collapse
Affiliation(s)
- Tijith K George
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Dineep Devadasan
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| |
Collapse
|
23
|
Deitersen J, El-Kashef DH, Proksch P, Stork B. Anthraquinones and autophagy - Three rings to rule them all? Bioorg Med Chem 2019; 27:115042. [PMID: 31420258 DOI: 10.1016/j.bmc.2019.115042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
In order to overcome therapy resistance in cancer, scientists search in nature for novel lead structures for the development of improved chemotherapeutics. Anthraquinones belong to a class of tricyclic organic natural compounds with promising anti-cancer effects. Anthraquinone derivatives are rich in structural diversity, and exhibit pleiotropic properties, among which the modulation of autophagy seems promising in the context of overcoming cancer-therapy resistance. Among the most promising derivatives in this regard are emodin, aloe emodin, rhein, physcion, chrysophanol and altersolanol A. On the molecular level, these compounds target autophagy via different upstream pathways including the AKT/mTOR-axis and transcription of autophagy-related proteins. The role of autophagy is pro-survival as well as cell death-promoting, depending on derivatives and their cell type specificity. This review summarizes observed effects of anthraquinone derivatives on autophagy and discusses targeted pathways and crosstalks. A cumulative knowledge about this topic paves the way for further research on modes of action, and aids to find a therapeutic window of anthraquinones in cancer-therapy.
Collapse
Affiliation(s)
- Jana Deitersen
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Dina H El-Kashef
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Björn Stork
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Mechsner B, Böse D, Hogenkamp F, Ledermann N, Hartmann R, Bochinsky K, Frey W, Pietruszka J. Enantioselective total synthesis of altersolanol A and N. Bioorg Med Chem 2019; 27:2991-2997. [DOI: 10.1016/j.bmc.2019.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|
25
|
Three new methylated Δ 8-pregnene steroids from the Polyalthia laui-derived fungus Stemphylium sp. AZGP4-2. Bioorg Chem 2019; 95:102927. [PMID: 31931286 DOI: 10.1016/j.bioorg.2019.102927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022]
Abstract
Three new methylated Δ8-pregnene steroids, stemphylisteroids A-C (1-3) were isolated from the medicinal plant Polyalthia laui-derived fungus Stemphylium sp. AZGP4-2. Their structures were elucidated by the detailed analysis of comprehensive spectroscopic data. The absolute configuration of 1 was determined by X-ray crystallographic analysis. Compound 1 show antibacterial activity against Escherichia coli with the MIC value of 6.25 μg/mL, and 2 exhibited a broad spectrum of antibacterial activities against six pathogenic bacteria with the MIC values ranging from 12.5 to 50 μg/mL. The discovery of three methylated Δ8-pregnene steroids 1-3 are a further addition to diverse and complex array of methylated steroids.
Collapse
|
26
|
Li J, Zheng YB, Kurtán T, Liu MX, Tang H, Zhuang CL, Zhang W. Anthraquinone derivatives from a coral associated fungus Stemphylium lycopersici. Nat Prod Res 2019; 34:2116-2123. [PMID: 30856351 DOI: 10.1080/14786419.2019.1576041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two new anthraquinone derivatives, alterporriol Y (1) and macrosporin 2-O-α-D-glucopyranoside (2), together with five known analogues (3-7) were isolated from the fungus Stemphylium lycopersici associated with the gorgonian coral Dichotella gemmacea collected from the South China Sea. Their structures were determined on the basis of detailed spectroscopic analysis and comparison with reported data. The absolute configurations were determined by the ECD method. In an in vitro cytotoxic assay, compound 3 and 4 showed potent effects against HCT-116 and MCF-7 cell lines. Compound 4 also exhibited cytotoxicity toward Huh7 stem cell-like cells.
Collapse
Affiliation(s)
- Jiao Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China.,School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Yu-Bing Zheng
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Ming-Xiang Liu
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Hua Tang
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| |
Collapse
|
27
|
Jeewon R, Luckhun AB, Bhoyroo V, Sadeer NB, Mahomoodally MF, Rampadarath S, Puchooa D, Sarma VV, Durairajan SSK, Hyde KD. Pharmaceutical Potential of Marine Fungal Endophytes. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76900-4_6-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Shu C, Shi CY, Sun Q, Zhou B, Li TY, He Q, Lu X, Liu RS, Ye LW. Generation of Endocyclic Vinyl Carbene Complexes via Gold-Catalyzed Oxidative Cyclization of Terminal Diynes: Toward Naphthoquinones and Carbazolequinones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04455] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chao Shu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Shi
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bo Zhou
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian-You Li
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiao He
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Long-Wu Ye
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
29
|
Berestetskiy AO, Gannibal FB, Minkovich EV, Osterman IA, Salimova DR, Sergiev PV, Sokornova SV. Spectrum of Biological Activity of the Alternaria Fungi Isolated from the Phyllosphere of Herbaceous Plants. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
Physcion 8-O-β-glucopyranoside exhibits anti-leukemic activity through targeting sphingolipid rheostat. Pharmacol Rep 2018; 70:853-862. [DOI: 10.1016/j.pharep.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
|
31
|
Deshmukh SK, Gupta MK, Prakash V, Reddy MS. Mangrove-Associated Fungi: A Novel Source of Potential Anticancer Compounds. J Fungi (Basel) 2018; 4:jof4030101. [PMID: 30149584 PMCID: PMC6162443 DOI: 10.3390/jof4030101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death worldwide, and the number of cases is increasing alarmingly every year. Current research focuses on the development of novel chemotherapeutic drugs derived from natural as well as synthetic sources. The abundance and diversity in natural resources offer tremendous potential for the discovery of novel molecules with unique mechanisms for cancer therapy. Mangrove-derived fungi are rich source of novel metabolites, comprising novel structure classes with diverse biological activities. Across the globe, coastal areas are primarily dominated by mangrove forests, which offer an intensely complex environment and species that mostly remain unexplored. In recent years, many structurally diverse compounds with unique skeletons have been identified from mangrove fungi and evaluated for their antiproliferative properties. These compounds may serve as lead molecules for the development of new anticancer drugs. Mangrove endophytes can be modulated using epigenetic means or culture optimization methods to improve the yield or to produce various similar analogs. The present review provides an insight into the bioactive metabolites from mangrove endophytes reported during the period from 2012 to 2018 (up to April, 2018) along with their cytotoxic properties, focusing on their chemical structures and mode of action, as indicated in the literature.
Collapse
Affiliation(s)
- Sunil K Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Manish K Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
32
|
Feng S, Wang Z, Zhang M, Zhu X, Ren Z. HG30, a tetrahydroanthraquinone compound isolated from the roots of Prismatomeris connate, induces apoptosis in human non-small cell lung cancer cells. Biomed Pharmacother 2018; 100:124-131. [PMID: 29427923 DOI: 10.1016/j.biopha.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/23/2023] Open
Abstract
HG30, a tetrahydroanthraquinone compound isolated from the roots of Prismatomeris connate, was previously shown to inhibit the proliferation of A549 cells. The aim of this study was to evaluate the antitumor activity of HG30 in two non-small cell lung cancer cell lines, A549 and H1299, and to explore potential underlying mechanisms. In cell viability and colony formation assays, HG30 treatment suppressed the proliferation and number of colonies formed by A549 and H1299 cells. Western blot analysis further demonstrated that induction of apoptosis by HG30 in A549 and H1299 cells involves both caspase-dependent apoptosis pathways, including mitochondria- and death receptor-mediated pathways, and an apoptosis-inducing factor (AIF) -associated caspase-independent apoptosis pathway. Specifically, HG30 treatment affected Bcl-2 family proteins and inhibitor of apoptosis protein (IAP) family proteins by down-regulating of Mcl-1, survivin and XIAP and up-regulation of Bid, and Bim.
Collapse
Affiliation(s)
- Shixiu Feng
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| | - Zhenzhen Wang
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China; College of Chemistry and Pharmaceutical Sciences, Northwest A & F University, Yangling 712100, China.
| | - Min Zhang
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| | - Xiaohui Zhu
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, China.
| | - Zhanjun Ren
- College of Animal Science, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
33
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
34
|
Basak S, Mal D. Applications of [4+2] Anionic Annulation and Carbonyl-Ene Reaction in the Synthesis of Anthraquinones, Tetrahydroanthraquinones, and Pyranonaphthoquinones. J Org Chem 2017; 82:11035-11051. [DOI: 10.1021/acs.joc.7b01987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shyam Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipakranjan Mal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
35
|
Zhang Y, Guo D, Ye S, Liu Z, Zhu G. Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes. Org Lett 2017; 19:1302-1305. [PMID: 28263604 DOI: 10.1021/acs.orglett.7b00095] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel copper-catalyzed cascade trifluoromethylation/cyclization of 2-(3-arylpropioloyl)benzaldehydes is described, allowing a direct access to structurally diverse trifluoromethylated naphthoquinones under mild reaction conditions. It represents the first trans-acyltrifluoromethylation of internal alkynes.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, Zhejiang Normal University , 688 Yingbin Road, Jinhua 321004, China
| | - Dongmei Guo
- Department of Chemistry, Zhejiang Normal University , 688 Yingbin Road, Jinhua 321004, China
| | - Shangyi Ye
- Department of Chemistry, Zhejiang Normal University , 688 Yingbin Road, Jinhua 321004, China
| | - Zhicheng Liu
- Department of Chemistry, Zhejiang Normal University , 688 Yingbin Road, Jinhua 321004, China
| | - Gangguo Zhu
- Department of Chemistry, Zhejiang Normal University , 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
36
|
The Fungal Endobiome of Medicinal Plants: A Prospective Source of Bioactive Metabolites. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Zovko Končić M, Ioannou E, Sawadogo WR, Abdel-Razik AF, Vagias C, Diederich M, Roussis V. 4α-Methylated steroids with cytotoxic activity from the soft coral Litophyton mollis. Steroids 2016; 115:130-135. [PMID: 27553729 DOI: 10.1016/j.steroids.2016.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/28/2016] [Accepted: 08/14/2016] [Indexed: 11/15/2022]
Abstract
Seven new (1-3, 5 and 8-10) and three previously reported (4, 6 and 7) 4α-methylated steroids were isolated from the organic extract of the gorgonian Litophyton mollis. The structures and the relative configurations of the isolated natural products were determined on the basis of extensive analyses of their NMR and MS data. Metabolites 1 and 5-8 exhibited cytotoxic activity against K562 human chronic myelogenous leukemia cells with IC50 values below 10μM, while at the same time displaying low toxicity against healthy PBMCs.
Collapse
Affiliation(s)
- Marijana Zovko Končić
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | | | - Ayman F Abdel-Razik
- Natural Products Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Constantinos Vagias
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Luxembourg; Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| |
Collapse
|
38
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
39
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
40
|
Cytotoxic, Antiproliferative and Pro-Apoptotic Effects of 5-Hydroxyl-6,7,3',4',5'-Pentamethoxyflavone Isolated from Lantana ukambensis. Nutrients 2015; 7:10388-97. [PMID: 26690473 PMCID: PMC4690089 DOI: 10.3390/nu7125537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/04/2022] Open
Abstract
Lantana ukambensis (Vatke) Verdc. is an African food and medicinal plant. Its red fruits are eaten and highly appreciated by the rural population. This plant was extensively used in African folk medicinal traditions to treat chronic wounds but also as anti-leishmanial or cytotoxic remedies, especially in Burkina Faso, Tanzania, Kenya, or Ethiopia. This study investigates the in vitro bioactivity of polymethoxyflavones extracted from a L. ukambensis as anti-proliferative and pro-apoptotic agents. We isolated two known polymethoxyflavones, 5,6,7,3′,4′,5′-hexamethoxyflavone (1) and 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2) from the whole plant of L. ukambensis. Their chemical structures were determined by spectroscopic analysis and comparison with published data. These molecules were tested for the anti-proliferative, cytotoxic and pro-apoptotic effects on human cancer cells. Among them, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2) was selectively cytotoxic against monocytic lymphoma (U937), acute T cell leukemia (Jurkat), and chronic myelogenous leukemia (K562) cell lines, but not against peripheral blood mononuclear cells (PBMCs) from healthy donors, at all tested concentrations. Moreover, this compound exhibited significant anti-proliferative and pro-apoptotic effects against U937 acute myelogenous leukemia cells. This study highlights the anti-proliferative and pro-apoptotic effects of 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2) and provides a scientific basis of traditional use of L. ukambensis.
Collapse
|
41
|
4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol 2015; 99:31-52. [PMID: 26549368 DOI: 10.1016/j.bcp.2015.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/03/2015] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC)6 is a unique isoenzyme targeting specific substrates including α-tubulin and heat shock protein (HSP)90. HDAC6 is involved in protein trafficking and degradation, cell shape and migration. Deregulation of HDAC6 activity is associated with a variety of diseases including cancer leading to a growing interest for developing HDAC6 inhibitors. Here, we identified two new structurally related 4-hydroxybenzoic acids as selective HDAC6 inhibitors reducing proliferation, colony and spheroid formation as well as viability of prostate cancer cells. Both compounds strongly enhanced α-tubulin acetylation leading to remodeling of microtubular organization. Furthermore, 4-hydroxybenzoic acids decreased HSP90α regulation of the human androgen receptor in prostate cancer cells by increasing HSP90α acetylation levels. Collectively, our data support the potential of 4-hydroxybenzoic acid derivatives as HDAC6-specific inhibitors with anti-cancer properties.
Collapse
|
42
|
Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450. Cell Death Dis 2015; 6:e1782. [PMID: 26068790 PMCID: PMC4669823 DOI: 10.1038/cddis.2015.134] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
Abstract
Cardiac glycosides (CGs), prescribed to treat cardiovascular alterations, display potent anti-cancer activities. Despite their well-established target, the sodium/potassium (Na+/K+)-ATPase, downstream mechanisms remain poorly elucidated. UNBS1450 is a hemi-synthetic cardenolide derived from 2″-oxovorusharin extracted from the plant Calotropis procera, which is effective against various cancer cell types with an excellent differential toxicity. By comparing adherent and non-adherent cancer cell types, we validated Mcl-1 as a general and early target of UNBS1450. A panel of CGs including cardenolides ouabain, digitoxin and digoxin as well as bufadienolides cinobufagin and proscillaridin A allowed us to generalize our findings. Our results show that Mcl-1, but not Bcl-xL nor Bcl-2, is rapidly downregulated prior to induction of apoptosis. From a mechanistic point of view, we exclude an effect on transcription and demonstrate involvement of a pathway affecting protein stability and requiring the proteasome in the early CG-induced Mcl-1 downregulation, without the involvement of caspases or the BH3-only protein NOXA. Strategies aiming at preventing UNBS1450-induced Mcl-1 downregulation by overexpression of a mutated, non-ubiquitinable form of the protein or the use of the proteasome inhibitor MG132 inhibited the compound's ability to induce apoptosis. Altogether our results point at Mcl-1 as a ubiquitous factor, downregulated by CGs, whose modulation is essential to achieve cell death.
Collapse
|
43
|
Dos Santos IP, da Silva LCN, da Silva MV, de Araújo JM, Cavalcanti MDS, Lima VLDM. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol 2015; 6:350. [PMID: 25999918 PMCID: PMC4423342 DOI: 10.3389/fmicb.2015.00350] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/08/2015] [Indexed: 11/21/2022] Open
Abstract
Endophytic fungi were isolated from healthy leaves of Indigofera suffruticosa Miller, a medicinal plant found in Brazil which is used in folk medicine to treat various diseases. Among 65 endophytic fungi isolated, 18 fungi showed activity against at least one tested microorganism in preliminary screening, and the best results were obtained with Nigrospora sphaerica (URM-6060) and Pestalotiopsis maculans (URM-6061). After fermentation in liquid media and in semisolid media, only N. sphaerica demonstrated antibacterial activity (in Potato Dextrose Broth-PDB and in semisolid rice culture medium). In the next step, a methanolic extract from rice culture medium (NsME) and an ethyl acetate extract (NsEAE) from the supernatant of PDB were prepared and both exhibited antimicrobial activity against Gram-negative and Gram-positive bacteria. The best result was observed against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 1.56 mg/mL and 6.25 mg/mL, respectively, for NsME and MIC and MBC values of 0.39 mg/mL and 3.12 mg/mL, respectively, for NsEAE. This study is the first report about the antimicrobial activity of endophytic fungi residing in I. suffruticosa leaves, in which the fungus N. sphaerica demonstrated the ability to produce bioactive agents with pharmaceutical potential, and may provide a new lead in the pursuit of new biological sources of drug candidates.
Collapse
Affiliation(s)
- Irailton Prazeres Dos Santos
- Departamento de Micologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil ; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | - Janete Magali de Araújo
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | | | - Vera Lucia de Menezes Lima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| |
Collapse
|
44
|
|
45
|
Two new stemphol sulfates from the mangrove endophytic fungus Stemphylium sp. 33231. J Antibiot (Tokyo) 2015; 68:501-3. [DOI: 10.1038/ja.2015.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 11/08/2022]
|
46
|
Mishra P, Verekar S, Deshmukh S, Joshi K, Fiebig H, Kelter G. Altersolanol A: a selective cytotoxic anthraquinone from a Phomopsis
sp. Lett Appl Microbiol 2015; 60:387-91. [DOI: 10.1111/lam.12384] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/13/2014] [Accepted: 12/14/2014] [Indexed: 12/01/2022]
Affiliation(s)
- P.D. Mishra
- Piramal Enterprises Limited; Goregaon (East) Mumbai India
| | - S.A. Verekar
- Piramal Enterprises Limited; Goregaon (East) Mumbai India
| | - S.K. Deshmukh
- Piramal Enterprises Limited; Goregaon (East) Mumbai India
| | - K.S. Joshi
- Piramal Enterprises Limited; Goregaon (East) Mumbai India
| | | | | |
Collapse
|
47
|
From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv 2014; 32:1111-22. [DOI: 10.1016/j.biotechadv.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 12/11/2022]
|
48
|
Gwak H, Haegeman G, Tsang BK, Song YS. Cancer-specific interruption of glucose metabolism by resveratrol is mediated through inhibition of Akt/GLUT1 axis in ovarian cancer cells. Mol Carcinog 2014; 54:1529-40. [DOI: 10.1002/mc.22227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/31/2014] [Accepted: 08/13/2014] [Indexed: 11/06/2022]
Affiliation(s)
- HyeRan Gwak
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Korea
| | - Guy Haegeman
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Korea
| | - Benjamin K. Tsang
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
- Departments of Obstetrics and Gynecology; University of Ottawa; Ottawa Ontario Canada
- Departments of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Departments of Interdisciplinary School of Health Sciences; University of Ottawa; Ottawa Ontario Canada
- Chronic Disease Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - Yong Sang Song
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
- Cancer Research Institute; Seoul National University College of Medicine; Seoul Korea
- Interdisciplinary Program in Cancer Biology; Seoul National University College of Medicine; Seoul Korea
- Department of Obstetrics and Gynecology; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
49
|
Hu J, Liu D, Xu W, Zhang F, Zheng H. One-pot reaction for the concise synthesis of spiro[benzofuran-2,2′-naphthalen]-1′-one derivatives. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Huang L, Zhang T, Li S, Duan J, Ye F, Li H, She Z, Gao G, Yang X. Anthraquinone G503 induces apoptosis in gastric cancer cells through the mitochondrial pathway. PLoS One 2014; 9:e108286. [PMID: 25268882 PMCID: PMC4182468 DOI: 10.1371/journal.pone.0108286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023] Open
Abstract
G503 is an anthraquinone compound isolated from the secondary metabolites of a mangrove endophytic fungus from the South China Sea. The present study elucidates the anti-tumor activity and the underlying mechanism of G503. Cell viability assay performed in nine cancer cell lines and two normal cell lines demonstrated that the gastric cancer cell line SGC7901 is the most G503-sensitive cancer cells. G503 induced SGC7901 cell death via apoptosis. G503 exposure activated caspases-3, -8 and -9. Pretreatment with the pan-caspase inhibitor Z-VAD-FMK and caspase-9 inhibitor Z-LEHD-FMK, but not caspase-8 inbibitor Z-IETD-FMK, attenuated the effect of G503. These results suggested that the intrinsic mitochondrial apoptosis pathway, rather than the extrinsic pathway, was involved in G503-induced apoptosis. Furthermore, G503 increased the ratio of Bax to Bcl-2 in the mitochondria and decreased the ratio in the cytosol. G503 treatment resulted in mitochondrial depolarization, cytochrome c release and the subsequent cleavage of caspase -9 and -3. Moreover, it is reported that the endoplasmic reticulum apoptosis pathway may also be activated by G503 by inducing capase-4 cleavage. In consideration of the lower 50% inhibitory concentration for gastric cancer cells, G503 may serve as a promising candidate for gastric cancer chemotherapy.
Collapse
Affiliation(s)
- Lijun Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shuai Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Junting Duan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fang Ye
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hanxiang Li
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Zhigang She
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, Guangdong Province, China
| |
Collapse
|