1
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
2
|
Wang Y, Sun Y, Zeng X, Zhuang R, Huang J, Zhang X, Guo Z, Li Y. 68Ga-Labeled TMTP1 Modified with d-Amino Acid for Positron Emission Tomography Diagnosis of Highly Metastatic Hepatocellular Carcinoma. J Med Chem 2024; 67:2165-2175. [PMID: 38270637 DOI: 10.1021/acs.jmedchem.3c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
TMTP1 (NVVRQ) has been proven to selectively target various highly metastatic tumor cells. Nonetheless, existing TMTP1 probes encounter challenges such as rapid blood clearance, limited tumor uptake, and inadequate suitability for therapeutic interventions. To overcome these constraints, we designed and synthesized eight peptide probes, employing innovative chemical modification strategies involving d-amino acid modification and retro-inverso isomerization. Notably, [68Ga]TV2 exhibited particularly impressive performance, displaying an 88.88, 76.90, and 90.32% improvement in uptake at 15, 30, and 60 min, respectively, while maintaining a high target-to-nontarget ratio. Further research has demonstrated that [68Ga]TV2 also exhibits remarkable diagnostic potential for detecting in situ microtumors in the liver. The results suggest that through the implementation of innovative chemical modification strategies, we successfully developed a peptide precursor, NOTA-G-NVvRQ, with specific affinity for highly metastatic tumors, enhanced in vivo pharmacokinetic profile, and heightened stability in vivo, rendering it well suited for prospective investigations in combination therapy studies.
Collapse
Affiliation(s)
- Yanjie Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuan Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyuan Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jinxiong Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xianzhong Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| |
Collapse
|
3
|
Lander AJ, Jin Y, Luk LYP. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chembiochem 2023; 24:e202200537. [PMID: 36278392 PMCID: PMC10805118 DOI: 10.1002/cbic.202200537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.
Collapse
Affiliation(s)
- Alexander J. Lander
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Yi Jin
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
4
|
Eberle R, Sevenich M, Gering I, Scharbert L, Strodel B, Lakomek NA, Santur K, Mohrlüder J, Coronado MA, Willbold D. Discovery of All-d-Peptide Inhibitors of SARS-CoV-2 3C-like Protease. ACS Chem Biol 2023; 18:315-330. [PMID: 36647580 PMCID: PMC9942092 DOI: 10.1021/acschembio.2c00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During the replication process of SARS-CoV-2, the main protease of the virus [3-chymotrypsin-like protease (3CLpro)] plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat COVID-19. We describe a novel and efficient next-generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CLpro targeting peptide ligands that inhibit the 3CL protease, in a competitive or noncompetitive mode, in the low μM range. From the most efficient l-peptides obtained from the phage display, we designed all-d-peptides based on the retro-inverso (ri) principle. They had IC50 values also in the low μM range and in combination, even in the sub-micromolar range. Additionally, the combination with Rutinprivir decreases 10-fold the IC50 value of the competitive inhibitor. The inhibition modes of these d-ri peptides were the same as their respective l-peptide versions. Our results demonstrate that retro-inverso obtained all-d-peptides interact with high affinity and inhibit the SARS-CoV-2 3CL protease, thus reinforcing their potential for further development toward therapeutic agents. The here described d-ri peptides address limitations associated with current l-peptide inhibitors and are promising lead compounds. Further optimization regarding pharmacokinetic properties will allow the development of even more potent d-peptides to be used for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Raphael
J. Eberle
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, 40225Düsseldorf, Germany
| | - Marc Sevenich
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, 40225Düsseldorf, Germany,Priavoid
GmbH, Merowingerplatz
1, 40225Düsseldorf, Germany
| | - Ian Gering
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany
| | - Lara Scharbert
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, 40225Düsseldorf, Germany
| | - Birgit Strodel
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, 40225Düsseldorf, Germany
| | - Nils A. Lakomek
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, 40225Düsseldorf, Germany
| | - Karoline Santur
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, 40225Düsseldorf, Germany
| | - Jeannine Mohrlüder
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany
| | - Mônika A. Coronado
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,
| | - Dieter Willbold
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425Jülich, Germany,Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, 40225Düsseldorf, Germany,
| |
Collapse
|
5
|
Fetse J, Zhao Z, Liu H, Mamani UF, Mustafa B, Adhikary P, Ibrahim M, Liu Y, Patel P, Nakhjiri M, Alahmari M, Li G, Cheng K. Discovery of Cyclic Peptide Inhibitors Targeting PD-L1 for Cancer Immunotherapy. J Med Chem 2022; 65:12002-12013. [PMID: 36067356 PMCID: PMC10671706 DOI: 10.1021/acs.jmedchem.2c00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Blockade of the interaction between programmed cell death ligand-1 (PD-L1) and its receptor PD-1 has shown great success in cancer immunotherapy. Peptides possess unique characteristics that give them significant advantages as immune checkpoint inhibitors. However, unfavorable physicochemical properties and proteolytic stability profiles limit the translation of bioactive peptides as therapeutic agents. Studies have revealed that cyclization improves the biological activity and stability of linear peptides. In this study, we report the use of macrocyclization scanning for the discovery of cyclic anti-PD-L1 peptides with improved bioactivity. The cyclic peptides demonstrated up to a 34-fold improvement in the PD-1/PD-L1 blocking activity and significant in vivo anti-tumor activity. Our results demonstrate that macrocyclization scanning is an effective way to improve the serum stability and bioactivity of the anti-PD-L1 linear peptide. This strategy can be employed in the optimization of other bioactive peptides, particularly those for protein-protein interaction modulation.
Collapse
Affiliation(s)
- John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Hao Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratik Adhikary
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Ibrahim
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Maryam Nakhjiri
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mohammed Alahmari
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Guangfu Li
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Recent Applications of Retro-Inverso Peptides. Int J Mol Sci 2021; 22:ijms22168677. [PMID: 34445382 PMCID: PMC8395423 DOI: 10.3390/ijms22168677] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Natural and de novo designed peptides are gaining an ever-growing interest as drugs against several diseases. Their use is however limited by the intrinsic low bioavailability and poor stability. To overcome these issues retro-inverso analogues have been investigated for decades as more stable surrogates of peptides composed of natural amino acids. Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case. Here, we review the application of retro-inverso peptides in anticancer therapies, in immunology, in neurodegenerative diseases, and as antimicrobials, analyzing pros and cons of this interesting subclass of molecules.
Collapse
|
7
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. Molecules 2020; 25:molecules25102314. [PMID: 32423178 PMCID: PMC7287708 DOI: 10.3390/molecules25102314] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Brendan J. Evans
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew T. King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia;
| | - Joanne F. Jamie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
- Correspondence: ; Tel.: +61-2-9850-8283
| |
Collapse
|
9
|
Yu R, Liu H, Wang B, Harvey PJ, Wei N, Chu Y. Synthesis and biological activity study of the retro-isomer of RhTx against TRPV1. RSC Adv 2020; 10:2141-2145. [PMID: 35494567 PMCID: PMC9048425 DOI: 10.1039/c9ra08829f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
TRPV1 is a ligand-gated ion channel and plays an important role in detecting noxious heat and pain with an unknown mechanism. RhTx from Chinese red-headed centipede activates the TRPV1 channel through the heat activation pathway by binding to the outer pore region, and causes extreme pain. Here, we synthesized RhTx and its retro-isomer RL-RhTx. Their structures were investigated by their circular dichroic spectra and NMR spectra. The effect of RhTx and RL-RhTx on the currents of wild-type and mutants of TRPV1 indicated that RL-RhTx have comparable TRPV1 activation responses to RhTx. A mutagenesis study showed that four TRPV1 residues, including Leu461, Asp602, Tyr632 and Thr634, significantly contributed to the activation effects of RL-RhTx and RhTx, and both peptides probably bind with TRPV1 in similar binding modes. As a novel TRPV1 activator, RL-RhTx provides an essential powerful tool for the investigation of activation mechanisms of TRPV1.
Collapse
Affiliation(s)
- Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Huijie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao 266021 China
| | - Baishi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland Brisbane QLD 4072 Australia
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao 266021 China
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| |
Collapse
|
10
|
Zerze GH, Stillinger FH, Debenedetti PG. Computational investigation of retro-isomer equilibrium structures: Intrinsically disordered, foldable, and cyclic peptides. FEBS Lett 2019; 594:104-113. [PMID: 31356683 DOI: 10.1002/1873-3468.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
We use all-atom modeling and advanced-sampling molecular dynamics simulations to investigate quantitatively the effect of peptide bond directionality on the equilibrium structures of four linear (two foldable, two disordered) and two cyclic peptides. We find that the retro forms of cyclic and foldable linear peptides adopt distinctively different conformations compared to their parents. While the retro form of a linear intrinsically disordered peptide with transient secondary structure fails to reproduce a secondary structure content similar to that of its parent, the retro form of a shorter disordered linear peptide shows only minor differences compared to its parent.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
Rai J. Peptide and protein mimetics by retro and retroinverso analogs. Chem Biol Drug Des 2019; 93:724-736. [PMID: 30582286 DOI: 10.1111/cbdd.13472] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
Abstract
Retroinverso analog of a natural polypeptide can sometimes mimic the structure and function of the natural peptide. The additional advantage of using retroinverso analog is that it is resistant to proteolysis. The retroinverso analogs have peptide sequence in reverse direction with respect to natural peptide and also have chirality of amino acid inverted from L to D. The D amino acids cannot be recognized by common proteases of the body; therefore, these peptides will not be degraded easily and have a longer-lasting effect as vaccine and inhibitor drugs. There have been many contested propositions about the geometric relationship between a peptide and its retro, inverso, or retroinverso analog. A retroinverso analog sometimes fails to adopt the structure that can mimic the function of the natural peptide. In such cases, partial retroinverso analog and other modifications can help in achieving the desired structure and function. Here, we review the theory, major experimental attempts, prediction methods, and alternative strategies related to retroinverso peptidomimetics.
Collapse
|
12
|
Wall JS, Williams A, Richey T, Stuckey A, Wooliver C, Christopher Scott J, Donnell R, Martin EB, Kennel SJ. Specific Amyloid Binding of Polybasic Peptides In Vivo Is Retained by β-Sheet Conformers but Lost in the Disrupted Coil and All D-Amino Acid Variants. Mol Imaging Biol 2018; 19:714-722. [PMID: 28229334 DOI: 10.1007/s11307-017-1063-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The heparin-reactive, helical peptide p5 is an effective amyloid imaging agent in mice with systemic amyloidosis. Analogs of p5 with modified secondary structure characteristics exhibited altered binding to heparin, synthetic amyloid fibrils, and amyloid extracts in vitro. Herein, we further study the effects of peptide helicity and chirality on specific amyloid binding using a mouse model of systemic inflammation-associated (AA) amyloidosis. PROCEDURES Peptides with disrupted helical structure [p5(coil) and p5(Pro3)], with an extended sheet conformation [p5(sheet)] or an all-D enantiomer [p5(D)], were chemically synthesized, radioiodinated, and their biodistribution studied in WT mice as well as transgenic animals with severe systemic AA amyloidosis. Peptide binding was assessed qualitatively by using small animal single-photon emission computed tomography/x-ray computed tomography imaging and microautoradiography and quantitatively using tissue counting. RESULTS Peptides with reduced helical propensity, p5(coil) and p5(Pro3), exhibited significantly reduced binding to AA amyloid-laden organs. In contrast, peptide p5(D) was retained by non-amyloid-related ligands in the liver and kidneys of both WT and AA mice, but it also bound AA amyloid in the spleen. The p5(sheet) peptide specifically bound AA amyloid in vivo and was not retained by healthy tissues in WT animals. CONCLUSIONS Modification of amyloid-targeting peptides using D-amino acids should be performed cautiously due to the introduction of unexpected secondary pharmacologic effects. Peptides that adopt a helical structure, to align charged amino acid side chains along one face, exhibit specific reactivity with amyloid; however, polybasic peptides with a propensity for β-sheet conformation are also amyloid-reactive and may yield a novel class of amyloid-targeting agents for imaging and therapy.
Collapse
Affiliation(s)
- Jonathan S Wall
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA. .,Departments of Radiology, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.
| | - Angela Williams
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Tina Richey
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Alan Stuckey
- Departments of Radiology, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Craig Wooliver
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - J Christopher Scott
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Robert Donnell
- Department of Pathobiology, University of Tennessee College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Emily B Martin
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Stephen J Kennel
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.,Departments of Radiology, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| |
Collapse
|
13
|
Garton M, Nim S, Stone TA, Wang KE, Deber CM, Kim PM. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc Natl Acad Sci U S A 2018; 115:1505-1510. [PMID: 29378946 PMCID: PMC5816147 DOI: 10.1073/pnas.1711837115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biologics are a rapidly growing class of therapeutics with many advantages over traditional small molecule drugs. A major obstacle to their development is that proteins and peptides are easily destroyed by proteases and, thus, typically have prohibitively short half-lives in human gut, plasma, and cells. One of the most effective ways to prevent degradation is to engineer analogs from dextrorotary (D)-amino acids, with up to 105-fold improvements in potency reported. We here propose a general peptide-engineering platform that overcomes limitations of previous methods. By creating a mirror image of every structure in the Protein Data Bank (PDB), we generate a database of ∼2.8 million D-peptides. To obtain a D-analog of a given peptide, we search the (D)-PDB for similar configurations of its critical-"hotspot"-residues. As a proof of concept, we apply our method to two peptides that are Food and Drug Administration approved as therapeutics for diabetes and osteoporosis, respectively. We obtain D-analogs that activate the GLP1 and PTH1 receptors with the same efficacy as their natural counterparts and show greatly increased half-life.
Collapse
Affiliation(s)
- Michael Garton
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Tracy A Stone
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Kyle Ethan Wang
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Charles M Deber
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Department of Computer Science, University of Toronto, Toronto M5S 2E4, Canada
| |
Collapse
|
14
|
Ying M, Shen Q, Zhan C, Wei X, Gao J, Xie C, Yao B, Lu W. A stabilized peptide ligand for multifunctional glioma targeted drug delivery. J Control Release 2016; 243:86-98. [PMID: 27693752 DOI: 10.1016/j.jconrel.2016.09.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Peptide ligands consisting of l-amino acids are subject to proteolysis in vivo. When modified on the surface of nanocarriers, those peptide ligands would readily degrade and the targeting efficacy is significantly attenuated. It has received increasing scrutiny to design stable peptide ligands for targeted drug delivery. Here, we present the design of a stable peptide ligand by the formation of a head-to-tail amide bond as an example. Even though the linear l-peptide A7R (termed LA7R) can bind specifically to vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1) that are overexpressed on glioma cells, neovasculature and glioma vasculogenic mimicry (VM), the tumor-homing capacity of LA7R is greatly impaired in vivo due to proteolysis (e.g. in the serum). A cyclic A7R (cA7R) peptide was identified by computer-aided peptide design and synthesized with high yield by combining solid phase peptide synthesis and native chemical ligation. The binding of cA7R to both receptors was theoretically and experimentally assessed. In our simulated model hydrophobic and ionic interactions dominated the binding of LA7R to receptors. It is very interesting that cA7R adopting a different structure from LA7R retained high binding affinities to receptors without affecting the hydrophobic and ionic interactions. After head-to-tail cyclization by the formation of an amide bond, cA7R exhibited exceptional stability in mouse serum. Either cA7R or LA7R was conjugated on the surface of doxorubicin (DOX) loaded liposomes (cA7R-LS/DOX or LA7R-LS/DOX). The results of in vitro cellular assays indicated that cA7R-LS/DOX not only displayed stronger anti-proliferative effect against glioma cells, but also demonstrated to be more efficient in destruction of VM and HUVEC tubes in comparison to LA7R-LS/DOX and plain liposomes (LS/DOX, without peptide conjugation). cA7R conjugation could achieve significantly higher accumulation of liposomes in glioma than did LA7R conjugation, which in turn, cA7R-LS/DOX could substantially suppress subcutaneous tumor growth when compared with other DOX formulations (free DOX, LS/DOX and LA7R-LS/DOX). The designed cyclic A7R exhibited the capability of targeting glioma cells, neovasculature and VM simultaneously in vivo. Considering the ease of synthesis, high binding affinity to receptors and increased stability of cA7R peptide in the present study, the design of head-to-tail cyclized peptides by the formation of amide bond based on computer-aided peptide design presents an alternative method to identify proteolytically stable peptide ligands.
Collapse
Affiliation(s)
- Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Qing Shen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jie Gao
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Bingxin Yao
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China; State Key Laboratory of Medical Neurobiology, The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Corbi-Verge C, Garton M, Nim S, Kim PM. Strategies to Develop Inhibitors of Motif-Mediated Protein-Protein Interactions as Drug Leads. Annu Rev Pharmacol Toxicol 2016; 57:39-60. [PMID: 27618737 DOI: 10.1146/annurev-pharmtox-010716-104805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Michael Garton
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , , .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
16
|
Checco JW, Gellman SH. Targeting recognition surfaces on natural proteins with peptidic foldamers. Curr Opin Struct Biol 2016; 39:96-105. [PMID: 27390896 DOI: 10.1016/j.sbi.2016.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/22/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Abstract
Molecules intended to antagonize protein-protein interactions or augment polypeptide-based signaling must bind tightly to large and specific surfaces on target proteins. Some types of unnatural oligomers with discrete folding propensities ('foldamers') have recently been shown to display this capability. This review covers important recent advances among several classes of foldamers, including α-peptides with secondary structures stabilized by covalent bonds, d-α-peptides, α/β-peptides and oligo-oxopiperazines. Recent advances in this area have involved enhancing membrane permeability to provide access to intracellular protein targets, improving pharmacokinetics and duration of action in vivo, and developing strategies appropriate for targeting large and irregularly-shaped protein surfaces.
Collapse
Affiliation(s)
- James W Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Kutyshenko VP, Mikoulinskaia GV, Molochkov NV, Prokhorov DA, Taran SA, Uversky VN. Structure and dynamics of the retro-form of the bacteriophage T5 endolysin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1281-91. [PMID: 27376687 DOI: 10.1016/j.bbapap.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Using high-resolution NMR spectroscopy we conducted a comparative analysis of the structural and dynamic properties of the bacteriophage T5 endolysin (EndoT5) and its retro-form; i.e., a protein with the reversed direction of the polypeptide chain (R-EndoT5). We show that structurally, retro-form can be described as the molten globule-like polypeptide that is easily able to form large oligomers and aggregates. To avoid complications associated with this high aggregation propensity of the retro protein, we compared EndoT5 and R-EndoT5 in the presence of strong denaturants. This analysis revealed that these two proteins possess different internal dynamics in solutions containing 8M urea, with the retro-form being characterized by larger dimensions and slower internal dynamics. We also show that in the absence of denaturant, both forms of the bacteriophage T5 endolysin are able to interact with micelles formed by the zwitterionic detergent dodecylphosphocholine (DPC), and that the formation of the protein-micelle complexes leads to the significant structural rearrangement of polypeptide chain and to the formation of stable hydrophobic core in the R-Endo T5.
Collapse
Affiliation(s)
- Victor P Kutyshenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Galina V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Nikolai V Molochkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Dmitry A Prokhorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Sergei A Taran
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia.
| |
Collapse
|
18
|
Eustache S, Leprince J, Tufféry P. Progress with peptide scanning to study structure-activity relationships: the implications for drug discovery. Expert Opin Drug Discov 2016; 11:771-84. [PMID: 27310575 DOI: 10.1080/17460441.2016.1201058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peptides have gained renewed interest as candidate therapeutics. However, to bring them to a broader clinical use, challenges such as the rational optimization of their pharmacological properties remain. Peptide scanning techniques offer a systematic framework to gain information on the functional role of individual amino acids of a peptide. Due to progress in mastering new chemical synthesis routes targeting amino acid backbone, they are currently diversified. Structure-activity relationship (SAR) analyses such as alanine- or enantioneric- scanning can now be supplemented by N-substitution, lactam cyclisation- or aza-amino scanning procedures addressing not only SAR considerations but also the peptide pharmacological properties. AREAS COVERED This review highlights the different scanning techniques currently available and illustrates how they can impact drug discovery. EXPERT OPINION Progress in peptide scanning techniques opens new perspectives for peptide drug development. It comes with the promise of a paradigm change in peptide drug design in which peptide drugs will be closer to the parent peptides. However, scanning still remains assimilable to a trial and error strategy that could benefit from being combined with specific in silico approaches that start reaching maturity.
Collapse
Affiliation(s)
- Stéphanie Eustache
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| | - Jérôme Leprince
- b INSERM U982 , Regional Platform for Cell Imaging of Normandy (PRIMACEN), University Rouen-Normandy , Mont-Saint-Aignan, France
| | - Pierre Tufféry
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
19
|
Liu M, Li X, Xie Z, Xie C, Zhan C, Hu X, Shen Q, Wei X, Su B, Wang J, Lu W. D-Peptides as Recognition Molecules and Therapeutic Agents. CHEM REC 2016; 16:1772-86. [PMID: 27255896 DOI: 10.1002/tcr.201600005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Over recent years, D-peptides have attracted increasing attention. D-peptides increase enzymatic stability, prolong the plasma half-life, improve oral bioavailability, and enhance binding activity and specificity with receptor or target proteins, in comparison with the corresponding L-peptide. Therefore, D-peptides are considered to have potential as recognition molecules and therapeutic agents. This review focuses on the design and application of D-peptides with biological activity.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Xue Li
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Zuoxu Xie
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Changyou Zhan
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China).,Department of Pharmacology School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (P. R. China)
| | - Xuefeng Hu
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Qing Shen
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Xiaoli Wei
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Bingxia Su
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Jing Wang
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of Education Department of Pharmaceutics School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (P. R. China)
| |
Collapse
|
20
|
Peptide-based inhibitors of protein–protein interactions. Bioorg Med Chem Lett 2016; 26:707-713. [DOI: 10.1016/j.bmcl.2015.12.084] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022]
|
21
|
Abstract
Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein-protein interactions. Coiled-coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled-coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.
Collapse
|
22
|
Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev 2015; 90:101-18. [PMID: 25959429 DOI: 10.1016/j.addr.2015.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, PR China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
23
|
Zhang Y, Deng C, Liu S, Wu J, Chen Z, Li C, Lu W. Active Targeting of Tumors through Conformational Epitope Imprinting. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Zhang Y, Deng C, Liu S, Wu J, Chen Z, Li C, Lu W. Active Targeting of Tumors through Conformational Epitope Imprinting. Angew Chem Int Ed Engl 2015; 54:5157-60. [DOI: 10.1002/anie.201412114] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/18/2022]
|
25
|
Rabideau AE, Liao X, Pentelute BL. Delivery of mirror image polypeptides into cells. Chem Sci 2014; 6:648-653. [PMID: 28706631 PMCID: PMC5492103 DOI: 10.1039/c4sc02078b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 11/21/2022] Open
Abstract
Mirror image peptides have unique stability and immunogenic properties in mammals, making them attractive agents to investigate. Their properties inside cells have been mostly unexplored because biopolymers are difficult to transport across cellular membranes. Here, we used protective antigen (PA) from anthrax toxin to deliver mirror image polypeptide cargo into the cytosol of mammalian cells when conjugated to the C-terminus of the PA-binding domain of lethal factor, LFN. We found mirror image polypeptides and proteins were translocated as efficiently into cells as their L counterparts. Once in the cytosol, by the use of western blot, we found that d peptides at the C-terminus of LFN were able to achieve higher steady state concentrations when compared to the l-peptide conjugate. With this platform, we delivered a d-peptide MDM2 antagonist to disrupt the p53/MDM2 interaction in cancer cells. For the first time, we show the PA/LFN system is adaptable for the intracellular delivery of mirror image peptides and proteins.
Collapse
Affiliation(s)
- Amy E Rabideau
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Ave. 18-596 , Cambridge , MA 02139 , USA .
| | - Xiaoli Liao
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Ave. 18-596 , Cambridge , MA 02139 , USA .
| | - Bradley L Pentelute
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Ave. 18-596 , Cambridge , MA 02139 , USA .
| |
Collapse
|
26
|
Wei X, Zhan C, Chen X, Hou J, Xie C, Lu W. Retro-inverso isomer of Angiopep-2: a stable d-peptide ligand inspires brain-targeted drug delivery. Mol Pharm 2014; 11:3261-8. [PMID: 24673510 DOI: 10.1021/mp500086e] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) prevents most drugs from reaching the site of central nervous system (CNS) diseases, intensively confining the therapeutic efficiency. Angiopep-2 (here termed (L)Angiopep), which is a 19-mer peptide derived from human Kunitz domain, can trigger transcytosis and traverse the BBB by recognizing low density lipoprotein-related protein 1 (LRP-1) expressed on the brain capillary endothelial cells. Various enzymes in the blood and the BBB, however, present multiple metabolic barriers to peptide-inspired brain-targeted drug delivery. Here we designed a retro-inverso isomer of (L)Angiopep, termed (D)Angiopep, to inspire brain-targeted drug delivery. Both (D)Angiopep and (L)Angiopep displayed high uptake capacity in LRP-1 overexpressed cells, including bEnd.3 and U87 cells. (D)Angiopep demonstrated lower uptake efficiency in both cell lines than did (L)Angiopep, suggestive of lower binding affinity to LRP-1 of the d-peptide. (D)Angiopep was resistant to proteolysis in fresh rat blood serum, while more than 85% of (L)Angiopep disappeared within 2 h. Endocytosed (D)Angiopep and (L)Angiopep were found to be colocalized with lysosomal compartments of bEnd.3 cells, indicating that susceptibility to proteolysis of (L)Angiopep in the BBB may further attenuate its transcytosis efficiency. In vivo, (D)Angiopep modified PEG-DSPE micelles displayed high distribution in normal brain and intracranial glioblastoma. Due to the expression of LRP-1 on the BBB and glioblastoma cells, proteolytically stable (D)Angiopep holds much potential for designing two-order brain tumor targeted delivery systems.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai, 201203, P. R. China
| | | | | | | | | | | |
Collapse
|
27
|
Deiber JA, Piaggio MV, Peirotti MB. Global chain properties of an alll-α-eicosapeptide with a secondary α-helix and its all retrod-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities. Electrophoresis 2013; 35:755-61. [DOI: 10.1002/elps.201300395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/26/2013] [Accepted: 10/11/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| |
Collapse
|