1
|
Altrichter Y, Bou-Dib P, Kuznia C, Seitz O. Towards a templated reaction that translates RNA in cells into a proaptotic peptide-PNA conjugate. J Pept Sci 2023:e3477. [PMID: 36606596 DOI: 10.1002/psc.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nucleic acid-templated chemistry opens the intriguing prospect of triggering the synthesis of drugs only in diseased cells. Herein, we explore the feasibility of using RNA-templated chemical reactions for the activation of a known Smac peptidomimetic compound (SMC), which has proapoptotic activity. Two peptide nucleic acid (PNA) conjugates were used to enable conditional activation of a masked SMC by reduction of an azide either by Staudinger reduction or catalytic photoreduction using a ruthenium complex. The latter provided ~135 nM SMC-PNA on as little as 10 nM (0.01 eq.) template. For the evaluation of the templated azido-SMC reduction system in cellulo, a stable HEK 293 cell line was generated, which overexpressed a truncated, non-functional form of the XIAP mRNA target. We furthermore describe the development of electroporation protocols that enable a robust delivery of PNA conjugates into HEK 293 cells. The action of the reactive PNA conjugates was evaluated by viability and flow cytometric apoptosis assays. In addition, electroporated probes were re-isolated and analyzed by ultra-high performance liquid chromatography (UPLC). Unfortunately, the ruthenium-PNA conjugate proved phototoxic, and treatment of cells with PNA-linked reducing agent and the azido-masked SMC conjugate did not result in a greater viability loss than treatment with scrambled sequence controls. Intracellular product formation was not detectable. A control experiment in total cellular RNA isolate indicated that the templated reaction can in principle proceed in a complex system. The results of this first-of-its-kind study reveal the numerous hurdles that must be overcome if RNA molecules are to trigger the synthesis of pro-apoptotic drugs inside cells.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Peter Bou-Dib
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Christina Kuznia
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Chang LH, Seitz O. RNA-templated chemical synthesis of proapoptotic L- and d-peptides. Bioorg Med Chem 2022; 66:116786. [PMID: 35594647 DOI: 10.1016/j.bmc.2022.116786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acid-programmed reactions find application in drug screening and nucleic acid diagnosis, and offer prospects for a RNA-sensitive prodrug approach. We aim for the development of a nucleic acid-templated reaction providing nucleic acid-linked molecules that can act on intracellular protein targets. Such reactions would be useful for in situ drug synthesis and activity-based DNA-encoded library screening. In this report, we show native chemical ligation-like chemical peptidyl transfer reactions between peptide-PNA conjugates. The reaction proceeds on RNA templates. As a chemical alternative to ribosomal peptide synthesis access to both L- and d-peptides is provided. In reactions affording 9 to 14 amino acid long pro-apoptotic L- and d-peptides, we found that certain PNA sequence motifs and combinations of cell penetrating peptides (CPPs) cause surprisingly high reactivity in absence of a template. Viability measurements demonstrate that the products of templated peptidyl transfer act on HeLa cells and HEK293 cells. Of note, the presence of cysteine, which is required for NCL chemistry, can enhance the bioactivity. The study provides guidelines for the application of peptide-PNA conjugates in templated synthesis and is of interest for in situ drug synthesis and activity-based DNA-encoded library screening.
Collapse
Affiliation(s)
- Li-Hao Chang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| |
Collapse
|
3
|
Houska R, Stutz MB, Seitz O. Expanding the scope of native chemical ligation - templated small molecule drug synthesis via benzanilide formation. Chem Sci 2021; 12:13450-13457. [PMID: 34777764 PMCID: PMC8528049 DOI: 10.1039/d1sc00513h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
We describe a reaction system that enables the synthesis of Bcr–Abl tyrosine kinase inhibitors (TKI) via benzanilide formation in water. The reaction is based on native chemical ligation (NCL). In contrast to previous applications, we used the NCL chemistry to establish aromatic rather than aliphatic amide bonds in coupling reactions between benzoyl and o-mercaptoaniline fragments. The method was applied for the synthesis of thiolated ponatinib and GZD824 derivatives. Acid treatment provided benzothiazole structures, which opens opportunities for diversification. Thiolation affected the affinity for Abl1 kinase only moderately. Of note, a ponatinib-derived benzothiazole also showed nanomolar affinity. NCL-enabled benzanilide formation may prove useful for fragment-based drug discovery. To show that benzanilide synthesis can be put under the control of a template, we connected the benzoyl and o-mercaptoaniline fragments to DNA and peptide nucleic acid (PNA) oligomers. Complementary RNA templates enabled adjacent binding of reactive conjugates triggering a rapid benzoyl transfer from a thioester-linked DNA conjugate to an o-mercaptoaniline-DNA or -PNA conjugate. We evaluated the influence of linker length and unpaired spacer nucleotides within the RNA template on the product yield. The data suggest that nucleic acid-templated benzanilide formation could find application in the establishment of DNA-encoded combinatorial libraries (DEL). The templated native chemical ligation between benzoyl thioesters and o-mercaptoaniline fragments proceeds in water and provides benzanilides that have nanomolar affinity for Abl1 kinase.![]()
Collapse
Affiliation(s)
- Richard Houska
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Marvin Björn Stutz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
4
|
Altrichter Y, Schöller J, Seitz O. Toward conditional control of Smac mimetic activity by RNA-templated reduction of azidopeptides on PNA or 2'-OMe-RNA. Biopolymers 2021; 112:e23466. [PMID: 34287823 DOI: 10.1002/bip.23466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Oligonucleotide templated reactions can be used to control the activity of functional molecules based on the presence of a specific trigger sequence. We report an RNA-controlled reaction system to conditionally restore the N-terminal amino group and thus binding affinity of azide-modified Smac mimetic compounds (SMCs) for their target protein X-linked Inhibitor of Apoptosis Protein (XIAP). Two templated reactions were compared: Staudinger reduction with phosphines and a photocatalytic reaction with Ru(bpy)2 (mcbpy). The latter proved faster and more efficient, especially for the activation of a bivalent SMC, which requires two consecutive reduction steps. The templated reaction proceeds with turnover when 2'-OMe-RNA probes are used, but is significantly more efficient with PNA, catalyzing a reaction in the presence of low, substoichiometric amounts (1%-3%, 10 nM) of target RNA.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Justus Schöller
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Zavoiura O, Resch-Genger U, Seitz O. Reactive Quantum Dot-Based FRET Systems for Target-Catalyzed Detection of RNA. Methods Mol Biol 2021; 2105:187-198. [PMID: 32088871 DOI: 10.1007/978-1-0716-0243-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotide-templated reactions (OTRs) between two reactive hybridization probes allow for the detection of a DNA or RNA of interest by exploiting the target molecule as a catalyst of chemical reactions. The product of such a reaction commonly exhibits distinct fluorescence properties and can be detected by the means of fluorescence spectroscopy. The vast majority of OTR systems utilize organic dyes as fluorescent reporters. However, the use of brighter emitters, such as semiconductor quantum dots (QDs), has potential to improve the sensitivity of detection by providing brighter signals and permitting the use of probes at very low concentrations. Here we report an RNA-templated reaction between two fluorescently labeled peptide nucleic acid (PNA)-based probes, which proceeds on the surface of a QD. The QD-bound PNA probe bears a cysteine functionality, while the other PNA is functionalized with an organic dye as a thioester. OTR between these probes proceeds through a transfer of the organic dye to the QD and can be conveniently monitored via fluorescence resonance energy transfer (FRET) from the QD to the Cy5. The reaction was performed in a conventional fluorescence microplate reader and permits the detection of RNA in the picomolar range.
Collapse
Affiliation(s)
- Oleksandr Zavoiura
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.,Department of Chemistry, Humboldt University of Berlin, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Petszulat H, Seitz O. A fluorogenic native chemical ligation for assessing the role of distance in peptide-templated peptide ligation. Bioorg Med Chem 2017; 25:5022-5030. [PMID: 28823838 DOI: 10.1016/j.bmc.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/19/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Protein-templated reactions have been used for fragment-based drug discovery as well as for covalent labeling, detection and manipulation of proteins. In spite of the growing interest in protein-templated reactions, little is known about the design criteria. Herein we present a systematic study on the effects of proximity in peptide-templated reactions. To facilitate reaction monitoring at low concentrations we developed a fluorogenic native chemical ligation that is based on the integration of a fluorescence quencher in the thiol leaving group. The reaction system provided up to 39-fold increases of emission from a fluorescein unit. By using templates based on coiled coils as models we investigated the effect of misalignments. The distance-reactivity pattern for remotely aligned peptides was remarkably different to reaction scenarios that involved seamlessly annealed peptides with overhanging functional groups.
Collapse
Affiliation(s)
- Henrik Petszulat
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Oliver Seitz
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
8
|
Abstract
Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| |
Collapse
|
9
|
Abstract
The present review offers an overview of nonclassical (e.g., with no pre- or in situ activation of a carboxylic acid partner) approaches for the construction of amide bonds. The review aims to comprehensively discuss relevant work, which was mainly done in the field in the last 20 years. Organization of the data follows a subdivision according to substrate classes: catalytic direct formation of amides from carboxylic and amines ( section 2 ); the use of carboxylic acid surrogates ( section 3 ); and the use of amine surrogates ( section 4 ). The ligation strategies (NCL, Staudinger, KAHA, KATs, etc.) that could involve both carboxylic acid and amine surrogates are treated separately in section 5 .
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
10
|
Reinhardt U, Lotze J, Mörl K, Beck-Sickinger AG, Seitz O. Rapid Covalent Fluorescence Labeling of Membrane Proteins on Live Cells via Coiled-Coil Templated Acyl Transfer. Bioconjug Chem 2015; 26:2106-17. [PMID: 26367072 DOI: 10.1021/acs.bioconjchem.5b00387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function. Furthermore, rapid and covalent labeling methods are desired to enable the analysis of fast biological processes. Herein, we describe the development of a method in which the formation of a parallel coiled coil triggers the transfer of a fluorescence dye from a thioester-linked coil peptide conjugate onto a cysteine-modified coil peptide. This labeling method requires only small tag sequences (max 23 aa) and occurs with high tag specificity. We show that size matching of the coil peptides and a suitable thioester reactivity allow the acyl transfer reaction to proceed within minutes (rather than hours). We demonstrate the versatility of this method by applying it to the labeling of different G-protein coupled membrane receptors including the human neuropeptide Y receptors 1, 2, 4, 5, the neuropeptide FF receptors 1 and 2, and the dopamine receptor 1. The labeled receptors are fully functional and able to bind the respective ligand with high affinity. Activity is not impaired as demonstrated by activation, internalization, and recycling experiments.
Collapse
Affiliation(s)
- Ulrike Reinhardt
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | - Jonathan Lotze
- Institut für Biochemie, Universität Leipzig , Brüderstrasse 34, D-04103 Leipzig, Germany
| | - Karin Mörl
- Institut für Biochemie, Universität Leipzig , Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| |
Collapse
|
11
|
Chen M, Heimer P, Imhof D. Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids 2015; 47:1283-99. [DOI: 10.1007/s00726-015-1982-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
|
12
|
Kern A, Seitz O. Template-directed ligation on repetitive DNA sequences: a chemical method to probe the length of Huntington DNA. Chem Sci 2015; 6:724-728. [PMID: 28706635 PMCID: PMC5494559 DOI: 10.1039/c4sc01974a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/16/2014] [Indexed: 01/17/2023] Open
Abstract
Several genomic disorders are caused by an excessive number of DNA triplet repeats. We developed a DNA-templated reaction in which product formation occurs only when the number of repeats exceeds a threshold indicative for the outbreak of Chorea Huntington. The combined use of native chemical PNA ligation and auxiliary DNA probes enabled reactions on templates obtained from human genomic DNA.
Collapse
Affiliation(s)
- Anika Kern
- Institut für Chemie , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany .
| | - Oliver Seitz
- Institut für Chemie , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany .
| |
Collapse
|
13
|
Brea RJ, Cole CM, Devaraj NK. In situ vesicle formation by native chemical ligation. Angew Chem Int Ed Engl 2014; 53:14102-5. [PMID: 25346090 PMCID: PMC4418804 DOI: 10.1002/anie.201408538] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 01/07/2023]
Abstract
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non-enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water-soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self-assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.
Collapse
Affiliation(s)
- Roberto J. Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Christian M. Cole
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| |
Collapse
|
14
|
Brea RJ, Cole CM, Devaraj NK. In Situ Vesicle Formation by Native Chemical Ligation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Reinhardt U, Lotze J, Zernia S, Mörl K, Beck-Sickinger AG, Seitz O. Proteintemplat-vermittelter Acyltransfer: eine chemische Methode für die Markierung von Membranproteinen an lebenden Zellen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Reinhardt U, Lotze J, Zernia S, Mörl K, Beck-Sickinger AG, Seitz O. Peptide-Templated Acyl Transfer: A Chemical Method for the Labeling of Membrane Proteins on Live Cells. Angew Chem Int Ed Engl 2014; 53:10237-41. [DOI: 10.1002/anie.201403214] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Indexed: 12/22/2022]
|
17
|
Choi Y, Metcalf G, Sleiman MH, Vair-Turnbull D, Ladame S. Oligonucleotide-templated reactions based on Peptide Nucleic Acid (PNA) probes: concept and biomedical applications. Bioorg Med Chem 2014; 22:4395-8. [PMID: 24957880 DOI: 10.1016/j.bmc.2014.05.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/12/2022]
Abstract
Sensing technologies based on Peptide Nucleic Acids (PNAs) and oligonucleotide-templated chemistry are perfectly suited for biomedical applications (e.g., diagnosis, prognosis and stratification of diseases) and could compete well with more traditional amplification technologies using expensive dual-labelled oligonucleotide probes. PNAs can be easily synthesised and functionalised, are more stable and are more responsive to point-mutations than their DNA counterpart. For these reasons, fluorogenic PNAs represent an interesting alternative to DNA-based molecular beacons for sensing applications in a cell-free environment, where cellular uptake is not required.
Collapse
Affiliation(s)
- Youngeun Choi
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Gavin Metcalf
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Mazen Haj Sleiman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
18
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA mit 3′-5′-Disulfid-Verknüpfung - schnelle chemische Ligation durch isosteren Ersatz. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA with 3'-5'-disulfide links--rapid chemical ligation through isosteric replacement. Angew Chem Int Ed Engl 2014; 53:4222-6. [PMID: 24623660 DOI: 10.1002/anie.201310644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Efforts to chemically ligate oligonucleotides, without resorting to biochemical enzymes, have led to a multitude of synthetic analogues, and have extended oligomer ligation to reactions of novel oligonucleotides, peptides, and hybrids such as PNA.1 Key requirements for potential diagnostic tools not based on PCR include a fast templated chemical DNA ligation method that exhibits high pairing selectivity, and a sensitive detection method. Here we report on a solid-phase synthesis of oligonucleotides containing 5'- or 3'-mercapto-dideoxynucleotides and their chemical ligations, yielding 3'-5'-disulfide bonds as a replacement for 3'-5'-phosphodiester units. Employing a system designed for fluorescence monitoring, we demonstrate one of the fastest ligation reactions with half-lives on the order of seconds. The nontemplated ligation reaction is efficiently suppressed by the choice of DNA modification and the 3'-5' orientation of the activation site. The influence of temperature on the templated reaction is shown.
Collapse
Affiliation(s)
- Volker Patzke
- Lehrstuhl für Bioorganische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany).
| | | | | |
Collapse
|
20
|
Vázquez O, Seitz O. Templated native chemical ligation: peptide chemistry beyond protein synthesis. J Pept Sci 2014; 20:78-86. [PMID: 24395765 DOI: 10.1002/psc.2602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/11/2022]
Abstract
Native chemical ligation (NCL) is a powerful method for the convergent synthesis of proteins and peptides. In its original format, NCL between a peptide containing a C-terminal thioester and another peptide offering an N-terminal cysteine has been used to enable protein synthesis of unprotected peptide fragments. However, the applications of NCL extend beyond the scope of protein synthesis. For instance, NCL can be put under the control of template molecules. In such a scenario, NCL enables the design of conditional reaction systems in which, peptide bond formation occurs only when a specific third party molecule is present. In this review, we will show how templates can be used to control the reactivity and chemoselectivity of NCL reactions. We highlight peptide and nucleic-acid-templated NCL reactions and discuss potential applications in nucleic acid diagnosis, origin-of-life studies and gene-expression-specific therapies.
Collapse
Affiliation(s)
- Olalla Vázquez
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489, Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489, Berlin, Germany
| |
Collapse
|
21
|
Michaelis J, Roloff A, Seitz O. Amplification by nucleic acid-templated reactions. Org Biomol Chem 2014; 12:2821-33. [DOI: 10.1039/c4ob00096j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nucleic acid-templated reactions that proceed with turnover provide a means for signal amplification, which facilitates the use and detection of biologically occurring DNA/RNA molecules.
Collapse
Affiliation(s)
- Julia Michaelis
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Alexander Roloff
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| |
Collapse
|
22
|
Michaelis J, van der Heden van Noort GJ, Seitz O. DNA-Triggered Dye Transfer on a Quantum Dot. Bioconjug Chem 2013; 25:18-23. [DOI: 10.1021/bc400494j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Julia Michaelis
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | - Oliver Seitz
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
23
|
Roloff A, Seitz O. Reducing product inhibition in nucleic acid-templated ligation reactions: DNA-templated cycligation. Chembiochem 2013; 14:2322-8. [PMID: 24243697 DOI: 10.1002/cbic.201300516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 01/19/2023]
Abstract
Programmable interactions allow nucleic acid molecules to template chemical reactions by increasing the effective molarities of appended reactive groups. DNA/RNA-triggered reactions can proceed, in principle, with turnover in the template. The amplification provided by the formation of many product molecules per template is a valuable asset when the availability of the DNA or RNA target is limited. However, turnover is usually impeded by reaction products that block access to the template. Product inhibition is most severe in ligation reactions, where products after ligation have dramatically increased template affinities. We introduce a potentially generic approach to reduce product inhibition in nucleic acid-programmed ligation reactions. A DNA-triggered ligation-cyclization sequence ("cycligation") of bifunctional peptide nucleic acid (PNA) conjugates affords cyclic ligation products. Melting experiments revealed that product cyclization is accompanied by a pronounced decrease in template affinity compared to linear ligation products. The reaction system relies upon haloacetylated PNA-thioesters and isocysteinyl-PNA-cysteine conjugates, which were ligated on a DNA template according to a native chemical ligation mechanism. Dissociation of the resulting linear product-template duplex (induced by, for example, thermal cycling) enabled product cyclization through sulfur-halide substitution. Both ligation and cyclization are fast reactions (ligation: 86 % yield after 20 min, cyclization: quantitative after 5 min). Under thermocycling conditions, the DNA template was able to trigger the formation of new product molecules when fresh reactants were added. Furthermore, cycligation produced 2-3 times more product than a conventional ligation reaction with substoichiometric template loads (0.25-0.01 equiv). We believe that cyclization of products from DNA-templated reactions could ultimately afford systems that completely overcome product inhibition.
Collapse
Affiliation(s)
- Alexander Roloff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489-Berlin (Germany)
| | | |
Collapse
|