1
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
2
|
Gleixner J, Kopanchuk S, Grätz L, Tahk MJ, Laasfeld T, Veikšina S, Höring C, Gattor AO, Humphrys LJ, Müller C, Archipowa N, Köckenberger J, Heinrich MR, Kutta RJ, Rinken A, Keller M. Illuminating Neuropeptide Y Y 4 Receptor Binding: Fluorescent Cyclic Peptides with Subnanomolar Binding Affinity as Novel Molecular Tools. ACS Pharmacol Transl Sci 2024; 7:1142-1168. [PMID: 38633582 PMCID: PMC11019746 DOI: 10.1021/acsptsci.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The neuropeptide Y (NPY) Y4 receptor (Y4R), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The Y4R is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, Y4R binding affinities have been mostly studied in radiochemical binding assays. Except for a few fluorescently labeled PP derivatives, fluorescence-tagged Y4R ligands with high affinity have not been reported. Here, we introduce differently fluorescence-labeled (Sulfo-Cy5, Cy3B, Py-1, Py-5) Y4R ligands derived from recently reported cyclic hexapeptides showing picomolar Y4R binding affinity. With pKi values of 9.22-9.71 (radioligand competition binding assay), all fluorescent ligands (16-19) showed excellent Y4R affinity. Y4R saturation binding, binding kinetics, and competition binding with reference ligands were studied using different fluorescence-based methods: flow cytometry (Sulfo-Cy5, Cy3B, and Py-1 label), fluorescence anisotropy (Cy3B label), and NanoBRET (Cy3B label) binding assays. These experiments confirmed the high binding affinity to Y4R (equilibrium pKd: 9.02-9.9) and proved the applicability of the probes for fluorescence-based Y4R competition binding studies and imaging techniques such as single-receptor molecule tracking.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Lukas Grätz
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Carina Höring
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Christoph Müller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
3
|
Plut E, Calderón JC, Stanojlović V, Gattor AO, Höring C, Humphrys LJ, Konieczny A, Kerres S, Schubert M, Keller M, Cabrele C, Clark T, Reiser O. Stereochemistry-Driven Interactions of α,γ-Peptide Ligands with the Neuropeptide Y Y 4-Receptor. J Med Chem 2023. [PMID: 37440703 DOI: 10.1021/acs.jmedchem.3c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The G-protein-coupled Y4-receptor (Y4R) and its endogenous ligand, pancreatic polypeptide (PP), suppress appetite in response to food intake and, thus, are attractive drug targets for body-weight control. The C-terminus of human PP (hPP), T32-R33-P34-R35-Y36-NH2, penetrates deep into the binding pocket with its tyrosine-amide and di-arginine motif. Here, we present two C-terminally amidated α,γ-hexapeptides (1a/b) with sequence Ac-R31-γ-CBAA32-R33-L34-R35-Y36-NH2, where γ-CBAA is the (1R,2S,3R)-configured 2-(aminomethyl)-3-phenylcyclobutanecarboxyl moiety (1a) or its mirror image (1b). Both peptides bind the Y4R (Ki of 1a/b: 0.66/12 nM) and act as partial agonists (intrinsic activity of 1a/b: 50/39%). Their induced-fit binding poses in the Y4R pocket are unique and build ligand-receptor contacts distinct from those of the C-terminus of the endogenous ligand hPP. We conclude that energetically favorable interactions, although they do not match those of the native ligand hPP, still guarantee high binding affinity (with 1a rivaling hPP) but not the maximum receptor activation.
Collapse
Affiliation(s)
- Eva Plut
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Jacqueline C Calderón
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Vesna Stanojlović
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Sabine Kerres
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Schüß C, Vu O, Schubert M, Du Y, Mishra NM, Tough IR, Stichel J, Weaver CD, Emmitte KA, Cox HM, Meiler J, Beck-Sickinger AG. Highly Selective Y 4 Receptor Antagonist Binds in an Allosteric Binding Pocket. J Med Chem 2021; 64:2801-2814. [PMID: 33595306 DOI: 10.1021/acs.jmedchem.0c02000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human neuropeptide Y receptors (Y1R, Y2R, Y4R, and Y5R) belong to the superfamily of G protein-coupled receptors and play an important role in the regulation of food intake and energy metabolism. We identified and characterized the first selective Y4R allosteric antagonist (S)-VU0637120, an important step toward validating Y receptors as therapeutic targets for metabolic diseases. To obtain insight into the antagonistic mechanism of (S)-VU0637120, we conducted a variety of in vitro, ex vivo, and in silico studies. These studies revealed that (S)-VU0637120 selectively inhibits native Y4R function and binds in an allosteric site located below the binding pocket of the endogenous ligand pancreatic polypeptide in the core of the Y4R transmembrane domains. Taken together, our studies provide a first-of-its-kind tool for probing Y4R function and improve the general understanding of allosteric modulation, ultimately contributing to the rational development of allosteric modulators for peptide-activated G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Oanh Vu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mario Schubert
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - C David Weaver
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States.,Institute for Drug Discovery, Leipzig University, Leipzig 04103, Germany
| | | |
Collapse
|
5
|
Konieczny A, Braun D, Wifling D, Bernhardt G, Keller M. Oligopeptides as Neuropeptide Y Y4 Receptor Ligands: Identification of a High-Affinity Tetrapeptide Agonist and a Hexapeptide Antagonist. J Med Chem 2020; 63:8198-8215. [DOI: 10.1021/acs.jmedchem.0c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Diana Braun
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
6
|
Richardson RR, Groenen M, Liu M, Mountford SJ, Briddon SJ, Holliday ND, Thompson PE. Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R. J Med Chem 2020; 63:5274-5286. [PMID: 32364733 DOI: 10.1021/acs.jmedchem.0c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyclic dimeric peptide 1229U91 (GR231118) has an unusual structure and displays potent, insurmountable antagonism of the Y1 receptor. To probe the structural basis for this activity, we have prepared ring size variants and heterodimeric compounds, identifying the specific residues underpinning the mechanism of 1229U91 binding. The homodimeric structure was shown to be dispensible, with analogues lacking key pharmacophoric residues in one dimer arm retaining high antagonist affinity. Compounds 11d-h also showed enhanced Y1R selectivity over Y4R compared to 1229U91.
Collapse
Affiliation(s)
- Rachel R Richardson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Marleen Groenen
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Mengjie Liu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Nicholas D Holliday
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Botta J, Appelhans J, McCormick PJ. Continuing challenges in targeting oligomeric GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:213-245. [DOI: 10.1016/bs.pmbts.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Hofmann S, Lindner J, Beck-Sickinger AG, Hey-Hawkins E, Bellmann-Sickert K. Carbaboranylation of Truncated C-Terminal Neuropeptide Y Analogue Leads to Full hY1
Receptor Agonism. Chembiochem 2018; 19:2300-2306. [DOI: 10.1002/cbic.201800343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Sven Hofmann
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Josephin Lindner
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry, Leipzig University; Johannisallee 29 04103 Leipzig Germany
| | - Kathrin Bellmann-Sickert
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| |
Collapse
|
9
|
She X, Pegoli A, Mayr J, Hübner H, Bernhardt G, Gmeiner P, Keller M. Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M 2R Affinity and Selectivity. ACS OMEGA 2017; 2:6741-6754. [PMID: 30023530 PMCID: PMC6044897 DOI: 10.1021/acsomega.7b01085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/05/2017] [Indexed: 05/13/2023]
Abstract
In search for selective ligands for the muscarinic acetylcholine receptor (MR) subtype M2, the dimeric ligand approach, that is combining two pharmacophores in one and the same molecule, was pursued. Different types (agonists, antagonists, orthosteric, and allosteric) of monomeric MR ligands were combined by various linkers with a dibenzodiazepinone-type MR antagonist, affording five types of heterodimeric compounds ("DIBA-xanomeline," "DIBA-TBPB," "DIBA-77-LH-28-1," "DIBA-propantheline," and "DIBA-4-DAMP"), which showed high M2R affinities (pKi > 8.3). The heterodimeric ligand UR-SK75 (46) exhibited the highest M2R affinity and selectivity [pKi (M1R-M5R): 8.84, 10.14, 7.88, 8.59, and 7.47]. Two tritium-labeled dimeric derivatives ("DIBA-xanomeline"-type: [3H]UR-SK71 ([3H]44) and "DIBA-TBPB"-type: [3H]UR-SK59 ([3H]64)) were prepared to investigate their binding modes at hM2R. Saturation-binding experiments showed that these compounds address the orthosteric binding site of the M2R. The investigation of the effect of various allosteric MR modulators [gallamine (13), W84 (14), and LY2119620 (15)] on the equilibrium (13-15) or saturation (14) binding of [3H]64 suggested a competitive mechanism between [3H]64 and the investigated allosteric ligands, and consequently a dualsteric binding mode of 64 at the M2R.
Collapse
Affiliation(s)
- Xueke She
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrea Pegoli
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Judith Mayr
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- E-mail: . Phone: (+49)941-9433329.
Fax: (+49)941-9434820 (M.K.)
| |
Collapse
|
10
|
Kuhn K, Littmann T, Dukorn S, Tanaka M, Keller M, Ozawa T, Bernhardt G, Buschauer A. In Search of NPY Y 4R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or d-Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists. ACS OMEGA 2017; 2:3616-3631. [PMID: 30023699 PMCID: PMC6044894 DOI: 10.1021/acsomega.7b00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The cross-linked pentapeptides (2R,7R)-diaminooctanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) ((2R,7R)-BVD-74D, (2R,7R)-1) and octanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) (2) as well as the pentapeptide Ac-Tyr-Arg-Leu-Arg-Tyr-amide (3) were previously described as neuropeptide Y Y4 receptor (Y4R) partial agonists. Here, we report on a series of analogues of (2R,7R)-1 and 2 in which Arg2, Leu3, or Arg4 were replaced by the respective aza-amino acids. The replacement of Arg2 in 3 with a carbamoylated arginine building block and the extension of the N-terminus by an additional arginine led to the high-affinity hexapeptide Ac-Arg-Tyr-Nω-[(4-aminobutyl)aminocarbonyl]Arg-Leu-Arg-Tyr-amide (35), which was used as a precursor for a d-amino acid scan. The target compounds were investigated for Y4R functional activity in assays with complementary readouts: aequorin Ca2+ and β-arrestin 1 or β-arrestin 2 assays. In contrast to the parent compounds, which are Y4R agonists, several ligands were able to suppress the effect elicited by the endogenous ligand pancreatic polypeptide and therefore represent a novel class of peptide Y4R antagonists.
Collapse
Affiliation(s)
- Kilian
K. Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Miho Tanaka
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Takeaki Ozawa
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| |
Collapse
|
11
|
Dukorn S, Littmann T, Keller M, Kuhn K, Cabrele C, Baumeister P, Bernhardt G, Buschauer A. Fluorescence- and Radiolabeling of [Lys4,Nle17,30]hPP Yields Molecular Tools for the NPY Y4 Receptor. Bioconjug Chem 2017; 28:1291-1304. [DOI: 10.1021/acs.bioconjchem.7b00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Kilian Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Division
of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Billrothstraße 11, 5020 Salzburg, Austria
| | - Paul Baumeister
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Keller M, Maschauer S, Brennauer A, Tripal P, Koglin N, Dittrich R, Bernhardt G, Kuwert T, Wester HJ, Buschauer A, Prante O. Prototypic 18F-Labeled Argininamide-Type Neuropeptide Y Y 1R Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS Med Chem Lett 2017; 8:304-309. [PMID: 28337321 DOI: 10.1021/acsmedchemlett.6b00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/24/2022] Open
Abstract
The neuropeptide Y (NPY) Y1 receptor (Y1R) selective radioligand (R)-Nα-(2,2-diphenylacetyl)-Nω-[4-(2-[18F]fluoropropanoylamino)butyl]aminocarbonyl-N-(4-hydroxybenzyl)argininamide ([18F]23), derived from the high-affinity Y1R antagonist BIBP3226, was developed for imaging studies of Y1R-positive tumors. Starting from the argininamide core bearing amine-functionalized spacer moieties, a series of fluoropropanoylated and fluorobenzoylated derivatives was synthesized and studied for Y1R affinity. The fluoropropanoylated derivative 23 displayed high affinity (Ki = 1.3 nM) and selectivity toward Y1R. Radiosynthesis was accomplished via 18F-fluoropropanoylation, yielding [18F]23 with excellent stability in mice; however, the biodistribution study revealed pronounced hepatobiliary clearance with high accumulation in the gall bladder (>100 %ID/g). Despite the unfavorable biodistribution, [18F]23 was successfully used for imaging of Y1R positive MCF-7 tumors in nude mice. Therefore, we suggest [18F]23 as a lead for the design of PET ligands with optimized physicochemical properties resulting in more favorable biodistribution and higher Y1R-dependent enrichment in mammary carcinoma.
Collapse
Affiliation(s)
- Max Keller
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Albert Brennauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Philipp Tripal
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Norman Koglin
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Ralf Dittrich
- Department
of Obstetrics and Gynecology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 21/23, D-91054 Erlangen, Germany
| | - Günther Bernhardt
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Torsten Kuwert
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Hans-Jürgen Wester
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Armin Buschauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
13
|
Kuhn KK, Ertl T, Dukorn S, Keller M, Bernhardt G, Reiser O, Buschauer A. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J Med Chem 2016; 59:6045-58. [DOI: 10.1021/acs.jmedchem.6b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kilian K. Kuhn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Stefanie Dukorn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Keller M, Kuhn KK, Einsiedel J, Hübner H, Biselli S, Mollereau C, Wifling D, Svobodová J, Bernhardt G, Cabrele C, Vanderheyden PML, Gmeiner P, Buschauer A. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. J Med Chem 2016; 59:1925-45. [PMID: 26824643 DOI: 10.1021/acs.jmedchem.5b01495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Collapse
Affiliation(s)
- Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Kilian K Kuhn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale, CNRS/IPBS , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jaroslava Svobodová
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Patrick M L Vanderheyden
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
15
|
Keller M, Schindler L, Bernhardt G, Buschauer A. Toward Labeled Argininamide-Type NPY Y1Receptor Antagonists: Identification of a Favorable Propionylation Site in BIBO3304. Arch Pharm (Weinheim) 2015; 348:390-8. [DOI: 10.1002/ardp.201400427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Lisa Schindler
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Günther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| |
Collapse
|