1
|
Mandal S, Singh A, Paul S, Ghosh A, Sen P. Amino acid triggered water-soluble NBD derivatives for differential organelle staining and the role of the chemical moiety for their specific localization. Chem Asian J 2022; 17:e202200837. [PMID: 35993447 DOI: 10.1002/asia.202200837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Apart from being the unit of protein, amino acids have diverse roles. Here we have shown that amino acids guide the differential transportation of the dye molecule to the cellular organelles depending upon the property of their intrinsic functionality. We have conjugated nitrobenzofurazan (NBD) moiety with two amino acids (lysine and histidine derivatives) with a linker. Both the derivates are water-soluble and biocompatible in nature. Surprisingly we found that lysine conjugated NBD (NBD-Lys) stains lipid droplets whereas the histidine conjugated NBD (NBD-His) stains lysosomes. We also measured the spectral properties of these two NBD conjugates. Results depict that both the conjugates are extremely stable both in air and inert atmosphere and the fluorescence of the derivatives almost remain unaltered at different pH. Further by altering the functionality of the side chain, we established the contribution of each functional group towards this differential organelle targeting.
Collapse
Affiliation(s)
- Subhasis Mandal
- Indian Association for the Cultivation of Science, school of biological Science, INDIA
| | - Arpana Singh
- Indian Association for the Cultivation of Science, school of biological Science, INDIA
| | - Subhojit Paul
- Indian Association for the Cultivation of Science, school of biological Science, INDIA
| | - Arnab Ghosh
- Indian Association for the Cultivation of Science, school of biological Science, INDIA
| | - Prosenjit Sen
- Indian Association for the Cultivation of Science, Biological Chemistry, 2A & 2B Raja S.C.Mullick Road, 2A & 2B Raja S.C.Mullick Road, 700032, India, 700032, Kolkata, INDIA
| |
Collapse
|
2
|
Neto BAD, Correa JR, Spencer J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry 2021; 28:e202103262. [PMID: 34643974 DOI: 10.1002/chem.202103262] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/13/2023]
Abstract
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - John Spencer
- Department of Chemistry, University of Sussex School of Life Sciences, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|
3
|
Coban B, Saka E, Yıldız U, Akkoç S. DNA Interactions and Antiproliferative Activity Studies of Octahedral Nickel Complexes of Two Extended Phenanthrolines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Burak Coban
- Department of Chemistry Faculty of Arts and Sciences Zonguldak Bülent Ecevit University Zonguldak 67100 Turkey
| | - Engin Saka
- Department of Chemistry Faculty of Arts and Sciences Zonguldak Bülent Ecevit University Zonguldak 67100 Turkey
| | - Ufuk Yıldız
- Department of Chemistry Faculty of Arts and Sciences Zonguldak Bülent Ecevit University Zonguldak 67100 Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical Sciences Faculty of Pharmacy Süleyman Demirel University Isparta 32260 Turkey
| |
Collapse
|
4
|
Zhao CX, Liu T, Xu M, Lin H, Zhang CJ. A fundamental study on the fluorescence-quenching effect of nitro groups in tetraphenylethene AIE dyes with electron-withdrawing groups. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Chen MC, Chen DG, Chou PT. Fluorescent Chromophores Containing the Nitro Group: Relatively Unexplored Emissive Properties. Chempluschem 2020; 86:11-27. [PMID: 33094565 DOI: 10.1002/cplu.202000592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Apart from numerous applications, for example in azo dye precursors, explosives, and industrial processes, the nitro group (-NO2 ) appears on countless molecules in photochemical research owing to its unique characteristics such as a strong electron-withdrawing ability and facile conversion to the reduced substituent. Although it is well known as a fluorescence quencher, fluorescent chromophores that contain the nitro group have also emerged, with 3-nitrophenothiazine being recently reported to have 100 % emission quantum yield in nonpolar solvents. The diverse characters of nitro-containing chromophores motivated us to systematically review those chromophores with nitro substituents, their associated photophysical properties, and applications. In this Review, we succinctly elaborate the advance of the fluorescent nitro chromophores in fields of intramolecular charge transfer, fluorescent probes and nonlinear properties. Special attention is paid to the rationalization of the associated emission spectroscopy, so that the readers can gain insights into the structure-photophysics relationship and hence gain insights for the strategic design of nitro chromophores.
Collapse
Affiliation(s)
- Meng-Chi Chen
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Deng-Gao Chen
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
6
|
Sodre ER, Guido BC, de Souza PEN, Machado DFS, Carvalho-Silva VH, Chaker JA, Gatto CC, Correa JR, Fernandes TDA, Neto BAD. Deciphering the Dynamics of Organic Nanoaggregates with AIEE Effect and Excited States: Lipophilic Benzothiadiazole Derivatives as Selective Cell Imaging Probes. J Org Chem 2020; 85:12614-12634. [PMID: 32876447 DOI: 10.1021/acs.joc.0c01805] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.
Collapse
Affiliation(s)
- Elaine R Sodre
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Bruna C Guido
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Paulo E N de Souza
- Laboratory of Software and Instrumentation in Applied Physics and Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Daniel F S Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Valter H Carvalho-Silva
- Divisão de Modelagem de Transformações Físicas e Químicas, Grupo de Química Teo'rica e Estrutural de Ana'polis, Centro de Pesquisa e Pos-Graduação, Universidade Estadual de Goia's,, Ana'polis, Goia's 75001-970, Brazil
| | - Juliano A Chaker
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Claudia C Gatto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Talita de A Fernandes
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| |
Collapse
|
7
|
Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Carvalho PHPR, Correa JR, Paiva KLR, Machado DFS, Scholten JD, Neto BAD. Plasma membrane imaging with a fluorescent benzothiadiazole derivative. Beilstein J Org Chem 2019; 15:2644-2654. [PMID: 31807199 PMCID: PMC6880836 DOI: 10.3762/bjoc.15.257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
This work describes a novel fluorescent 2,1,3-benzothiadiazole derivative designed to act as a water-soluble and selective bioprobe for plasma membrane imaging. The new compound was efficiently synthesized in a two-step procedure with good yields. The photophysical properties were evaluated and the dye proved to have an excellent photostability in several solvents. DFT calculations were found in agreement with the experimental data and helped to understand the stabilizing intramolecular charge-transfer process from the first excited state. The new fluorescent derivative could be applied as selective bioprobe in several cell lines and displayed plasma-membrane affinity during the imaging experiments for all tested models.
Collapse
Affiliation(s)
- Pedro H P R Carvalho
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
- Laboratory of Molecular Catalysis, Institute of Chemistry, Graduate Program (PPGQ), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| | - Karen L R Paiva
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| | - Daniel F S Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| | - Jackson D Scholten
- Laboratory of Molecular Catalysis, Institute of Chemistry, Graduate Program (PPGQ), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
- Laboratory of Molecular Catalysis, Institute of Chemistry, Graduate Program (PPGQ), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
9
|
Güngör T, Önder FC, Tokay E, Gülhan ÜG, Hacıoğlu N, Tok TT, Çelik A, Köçkar F, Ay M. PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells. Eur J Med Chem 2019; 171:383-400. [DOI: 10.1016/j.ejmech.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
|
10
|
Carvalho TO, Carvalho PHPR, Correa JR, Guido BC, Medeiros GA, Eberlin MN, Coelho SE, Domingos JB, Neto BAD. Palladium Catalyst with Task-Specific Ionic Liquid Ligands: Intracellular Reactions and Mitochondrial Imaging with Benzothiadiazole Derivatives. J Org Chem 2019; 84:5118-5128. [DOI: 10.1021/acs.joc.9b00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thiago O. Carvalho
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Pedro H. P. R. Carvalho
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Jose R. Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Bruna C. Guido
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Gisele A. Medeiros
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Marcos N. Eberlin
- ThoMSon Mass Spectrometry Laboratory, University of Campinas-UNICAMP, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Schoool of Engeneering, Mackenzie Presbyterian University, São Paulo, São Paulo 01302-907, Brazil
| | - Sara E. Coelho
- Laboratory of Biomimetic Catalysis (LaCBio), Chemistry Department, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Josiel B. Domingos
- Laboratory of Biomimetic Catalysis (LaCBio), Chemistry Department, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Brenno A. D. Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| |
Collapse
|
11
|
Carvalho PHPR, Correa JR, Paiva KLR, Baril M, Machado DFS, Scholten JD, de Souza PEN, Veiga-Souza FH, Spencer J, Neto BAD. When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining. Org Chem Front 2019. [DOI: 10.1039/c9qo00428a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design, synthesis, molecular architecture and the unexpected behavior of fluorescent benzothiadiazole for selective mitochondrial and plasma membrane staining are investigated.
Collapse
|
12
|
Peng B, Zhao X, Yang MS, Li LL. Intracellular transglutaminase-catalyzed polymerization and assembly for bioimaging of hypoxic neuroblastoma cells. J Mater Chem B 2019; 7:5626-5632. [DOI: 10.1039/c9tb01227c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An intracellular polymerization and assembly strategy was proposed for selectively bioimaging of hypoxic neuroblastoma cells, which was prospected for further tracing and locating brain tumors in vivo.
Collapse
Affiliation(s)
- Bo Peng
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
- College of Materials Science and Opto-Electronic Technology
| | - Xiao Zhao
- School of Chemical Engineering
- Northeast Electric Power University
- Jilin
- China
| | - Miao-Sen Yang
- School of Chemical Engineering
- Northeast Electric Power University
- Jilin
- China
| | - Li-Li Li
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| |
Collapse
|
13
|
Mota AR, Correa JR, de Andrade LP, Assumpção JA, de Souza Cintra GA, Freitas-Junior LH, da Silva WA, de Oliveira HCB, Neto BAD. From Live Cells to Caenorhabditis elegans: Selective Staining and Quantification of Lipid Structures Using a Fluorescent Hybrid Benzothiadiazole Derivative. ACS OMEGA 2018; 3:3874-3881. [PMID: 30023883 PMCID: PMC6044862 DOI: 10.1021/acsomega.8b00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The current article describes the synthesis, characterization, and application of a designed hybrid fluorescent BTD-coumarin (2,1,3-benzothiadiazole-coumarin) derivative (named BTD-Lip). The use of BTD-Lip for live-cells staining showed excellent results, and lipid droplets (LDs) could be selectively stained. When compared with the commercially available dye (BODIPY) for LD staining, it was noted that the designed hybrid fluorescence was capable of staining a considerable larger number of LDs in both live and fixed cells (ca. 40% more). The new dye was also tested on live Caenorhabditis elegans (complex model) and showed an impressive selectivity inside the worm, whereas the commercial dye showed no selectivity in the complex model.
Collapse
Affiliation(s)
- Alberto
A. R. Mota
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília-DF CEP 70904970, Brazil
| | - Jose R. Correa
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília-DF CEP 70904970, Brazil
| | - Lorena P. de Andrade
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília-DF CEP 70904970, Brazil
| | - José A.
F. Assumpção
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília-DF CEP 70904970, Brazil
| | - Giovana A. de Souza Cintra
- Departamento
de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900 São
Paulo, São Paulo, Brasil
| | - Lucio H. Freitas-Junior
- Departamento
de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900 São
Paulo, São Paulo, Brasil
| | - Wender A. da Silva
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília-DF CEP 70904970, Brazil
| | - Heibbe C. B. de Oliveira
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília-DF CEP 70904970, Brazil
| | - Brenno A. D. Neto
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília-DF CEP 70904970, Brazil
| |
Collapse
|
14
|
Fine-tailoring the linker of near-infrared fluorescence probes for nitroreductase imaging in hypoxic tumor cells. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Pazini A, Maqueira L, Stieler R, Aucélio RQ, Limberger J. Synthesis, characterization and photophysical properties of luminescent non-symmetric 4-pyridyl benzothiadiazole derivatives. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Wang J, Kou J, Hou X, Zhao Z, Chao H. A ruthenium(II) anthraquinone complex as the theranostic agent combining hypoxia imaging and HIF-1α inhibition. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
N-pentyl-nitrofurantoin induces apoptosis in HL-60 leukemia cell line by upregulating BAX and downregulating BCL-xL gene expression. Pharmacol Rep 2016; 68:1046-53. [DOI: 10.1016/j.pharep.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022]
|
18
|
Lin D, Fei X, Li R, Gu Y, Tang Y, Zhou J, Zhang B. A large stokes-shifted fluorescent dye synthesized as a new probe for the determination of protein. J Fluoresc 2016; 26:1511-20. [PMID: 27307022 DOI: 10.1007/s10895-016-1851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
A novel fluorescent dye, 1-(2-hydroxyethyl)-4-((E)-2-(3-benzothiazol-2yl-9-ethyl-carbazole-3yl)vinyl) pyridinium bromide, was synthesized for determination of protein and its structure was characterized by (1)H NMR. Photophysics of the new probe in different solvents has been delineated in this paper, the new fluorescent molecular dye exhibited a large stokes-shifted and fluorescence quantum yields in organic solvent. The photostability and thermostability of the new dye were also studied and the results suggested the stable was excellent. The interactions of the dye with bovine serum albumin (BSA) , Human serumal bumin (HSA) and calf thymus deoxyribonucleic acid (ctDNA) were studied by fluorescence and absorption spectroscopy. The binding constant for BSA, HSA and DNA were calculated to be 8.91 × 10(7), 1.86 × 10(6) and 2.9 × 10(4), respectively. The experimental results indicated a potential value of the new dye for biomarker.
Collapse
Affiliation(s)
- Dayong Lin
- School of Envirnmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xuening Fei
- School of Envirnmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China. .,School of Science, Tianjin Chengjian University, No.26 Jinjing Road, Xiqing District, Tianjin, 300384, China.
| | - Ran Li
- School of Science, Tianjin Chengjian University, No.26 Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Yingchun Gu
- School of Science, Tianjin Chengjian University, No.26 Jinjing Road, Xiqing District, Tianjin, 300384, China. .,Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Zhongguancun North First Street 2, Beijing, 100190, China.
| | - Yalin Tang
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Zhongguancun North First Street 2, Beijing, 100190, China.
| | - Jianguo Zhou
- School of Science, Tianjin Chengjian University, No.26 Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Baolian Zhang
- School of Science, Tianjin Chengjian University, No.26 Jinjing Road, Xiqing District, Tianjin, 300384, China
| |
Collapse
|
19
|
Sun L, Chen Y, Kuang S, Li G, Guan R, Liu J, Ji L, Chao H. Iridium(III) Anthraquinone Complexes as Two-Photon Phosphorescence Probes for Mitochondria Imaging and Tracking under Hypoxia. Chemistry 2016; 22:8955-65. [DOI: 10.1002/chem.201600310] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Lingli Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Guanying Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| |
Collapse
|
20
|
Mota AAR, Corrêa JR, Carvalho PHPR, de Sousa NMP, de Oliveira HCB, Gatto CC, da Silva Filho DA, de Oliveira AL, Neto BAD. Synthesis, Structure, Properties, and Bioimaging of a Fluorescent Nitrogen-Linked Bisbenzothiadiazole. J Org Chem 2016; 81:2958-65. [PMID: 26930300 DOI: 10.1021/acs.joc.6b00245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This paper describes the synthesis, structure, photophysical properties, and bioimaging application of a novel 2,1,3-benzothiadiazole (BTD)-based rationally designed fluorophore. The capability of undergoing efficient stabilizing processes from the excited state allowed the novel BTD derivative to be used as a stable probe for bioimaging applications. No notable photobleaching effect or degradation could be observed during the experimental time period. Before the synthesis, the molecular architecture of the novel BTD derivative was evaluated by means of DFT calculations to validate the chosen design. Single-crystal X-ray analysis revealed the nearly flat characteristics of the structure in a syn conformation. The fluorophore was successfully tested as a live-cell-imaging probe and efficiently stained MCF-7 breast cancer cell lineages.
Collapse
Affiliation(s)
- Alberto A R Mota
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| | - José R Corrêa
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| | - Pedro H P R Carvalho
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| | - Núbia M P de Sousa
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| | - Heibbe C B de Oliveira
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| | - Claudia C Gatto
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| | - Demétrio A da Silva Filho
- Institute of Physics, University of Brasilia (IF-UnB) , Campus Universitario Darcy Ribeiro, CEP, Brasilia, DF 70919-970, Brazil
| | - Aline L de Oliveira
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB) , Campus Universitário Darcy Ribeiro, CEP, P.O. Box 4478,Brasilia, DF 70904-970, Brazil
| |
Collapse
|
21
|
Elmes RBP. Bioreductive fluorescent imaging agents: applications to tumour hypoxia. Chem Commun (Camb) 2016; 52:8935-56. [DOI: 10.1039/c6cc01037g] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of new optical chemosensors for various reductases presents an ideal approach to visualise areas of tissue hypoxia.
Collapse
Affiliation(s)
- Robert B. P. Elmes
- Department of Chemistry
- Maynooth University
- National University of Ireland
- Maynooth
- Ireland
| |
Collapse
|
22
|
Chevalier A, Piao W, Hanaoka K, Nagano T, Renard PY, Romieu A. Azobenzene-caged sulforhodamine dyes: a novel class of 'turn-on' reactive probes for hypoxic tumor cell imaging. Methods Appl Fluoresc 2015; 3:044004. [PMID: 29148517 DOI: 10.1088/2050-6120/3/4/044004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New sulforhodamine-based fluorescent 'turn-on' probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble 'azobenzene-caged' fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three 'smart' probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).
Collapse
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, COBRA UMR 6014 & FR 3038; Univ. Rouen; INSA Rouen; CNRS, IRCOF, 1, Rue Tesnières, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Sun L, Li G, Chen X, Chen Y, Jin C, Ji L, Chao H. Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids. Sci Rep 2015; 5:14837. [PMID: 26423609 PMCID: PMC4589790 DOI: 10.1038/srep14837] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is an important characteristic of malignant solid tumors and is considered as a possible causative factor for serious resistance to chemo- and radiotherapy. The exploration of novel fluorescent probes capable of detecting hypoxia in solid tumors will aid tumor diagnosis and treatment. In this study, we reported the design and synthesis of a series of "off-on" phosphorescence probes for hypoxia detection in adherent and three-dimensional multicellular spheroid models. All of the iridium(III) complexes incorporate an azo group as an azo-reductase reactive moiety to detect hypoxia. Reduction of non-phosphorescent probes Ir1-Ir8 by reductases under hypoxic conditions resulted in the generation of highly phosphorescent corresponding amines for detection of hypoxic regions. Moreover, these probes can penetrate into 3D multicellular spheroids over 100 μm and image the hypoxic regions. Most importantly, these probes display a high selectivity for the detection of hypoxia in 2D cells and 3D multicellular spheroids.
Collapse
Affiliation(s)
- Lingli Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guanying Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiang Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
24
|
Neto BAD, Carvalho PHPR, Correa JR. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds. Acc Chem Res 2015; 48:1560-9. [PMID: 25978615 DOI: 10.1021/ar500468p] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or as pure solids, no fading even after long periods of irradiation, bright emissions with no blinking, good signal-to-noise ratios, efficiency to transpose the cell membrane, and irradiation preferentially in the visible-light region are just some features noted by using BTDs. As the pioneering group in the use of fluorescent small-molecule BTDs for bioimaging purposes, we feel pleased to share our experience, results, advances, and personal perspectives with the readers of this Account. The readers will clearly note the huge advantages of using fluorescent BTDs over classical scaffolds, and hopefully they will be inspired and motivated to further BTD technology in the fields of molecular and cellular biology.
Collapse
Affiliation(s)
- Brenno A. D. Neto
- Laboratory
of Medicinal and
Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitario Darcy
Ribeiro, Brasilia 70904970, P.O. Box 4478, DF, Brazil
| | - Pedro H. P. R. Carvalho
- Laboratory
of Medicinal and
Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitario Darcy
Ribeiro, Brasilia 70904970, P.O. Box 4478, DF, Brazil
| | - Jose R. Correa
- Laboratory
of Medicinal and
Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitario Darcy
Ribeiro, Brasilia 70904970, P.O. Box 4478, DF, Brazil
| |
Collapse
|
25
|
Carvalho PHPR, Correa JR, Guido BC, Gatto CC, De Oliveira HCB, Soares TA, Neto BAD. Designed Benzothiadiazole Fluorophores for Selective Mitochondrial Imaging and Dynamics. Chemistry 2014; 20:15360-74. [DOI: 10.1002/chem.201404039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Indexed: 11/06/2022]
|
26
|
Mota AAR, Carvalho PHPR, Guido BC, de Oliveira HCB, Soares TA, Corrêa JR, Neto BAD. Bioimaging, cellular uptake and dynamics in living cells of a lipophilic fluorescent benzothiadiazole at low temperature (4 °C). Chem Sci 2014. [DOI: 10.1039/c4sc01785d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
da Cruz EHG, Carvalho PHPR, Corrêa JR, Silva DAC, Diogo EBT, de Souza Filho JD, Cavalcanti BC, Pessoa C, de Oliveira HCB, Guido BC, da Silva Filho DA, Neto BAD, da Silva Júnior EN. Design, synthesis and application of fluorescent 2,1,3-benzothiadiazole-triazole-linked biologically active lapachone derivatives. NEW J CHEM 2014. [DOI: 10.1039/c3nj01499a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|