1
|
Klein M. Targeting Protein-Protein Interactions to Inhibit Cyclin-Dependent Kinases. Pharmaceuticals (Basel) 2023; 16:ph16040519. [PMID: 37111276 PMCID: PMC10144709 DOI: 10.3390/ph16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play diverse and critical roles in normal cells and may be exploited as targets in cancer therapeutic strategies. CDK4 inhibitors are currently approved for treatment in advanced breast cancer. This success has led to continued pursuit of targeting other CDKs. One challenge has been in the development of inhibitors that are highly selective for individual CDKs as the ATP-binding site is highly conserved across this family of proteins. Protein-protein interactions (PPI) tend to have less conservation amongst different proteins, even within protein families, making targeting PPI an attractive approach to improving drug selectivity. However, PPI can be challenging to target due to structural and physicochemical features of these interactions. A review of the literature specific to studies focused on targeting PPI involving CDKs 2, 4, 5, and 9 was conducted and is presented here. Promising lead molecules to target select CDKs have been discovered. None of the lead molecules discovered have led to FDA approval; however, the studies covered in this review lay the foundation for further discovery and develop of PPI inhibitors for CDKs.
Collapse
Affiliation(s)
- Mark Klein
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Healthcare System, Minneapolis, MN 55417, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Zhao H, Hu X, Zhang Y, Tang C, Feng B. Progress in Synthesis and Bioactivity Evaluation of Pyrazoloquinazolines. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180815666181017120100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
This paper reviews the research progress of pyrazoloquinazolines which
widely used in the field of medicine and pesticide in recent years. Five types of
pyrazoloquinazolines are introduced: pyrazolo [4,3-h]quinazolines, pyrazolo[1,5-c]quinazolines,
pyrazolo[4,3-f]quinazolines, pyrazolo[1,5-a] quinazolines , pyrazolo[1,5-b]quinazolines, and their
new progress in the synthesis methods and treatment of diseases.
Methodology:
The derivatives of pyrazoloquinazolines exhibit a wide range of pharmacological
properties such as antibacterial, anticancer, antioxidants, anti-inflammatory, anti-diabetic, antiviral
activities. Consequently, their syntheses have attracted significant interest. Various methodologies
have been developed for the synthesis and functionalization of these class of compounds.
Conclusion:
In the present article, the relevant and recent advances in the field will be briefly
covered.
Collapse
Affiliation(s)
- Hui Zhao
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Xiaoxia Hu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Yue Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Chunlei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Wu JW, Zhang H, Li WY, Tang X, Li HL, Lu XH, Zheng ZH, Ma Y, Wang RL. Design potential selective inhibitors for human leukocyte common antigen-related (PTP-LAR) with fragment replace approach. J Biomol Struct Dyn 2019; 38:5338-5348. [DOI: 10.1080/07391102.2019.1699862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jing-Wei Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Huan Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xue Tang
- Tasly Research Institute, Tasly Holding Group Co., Ltd, Tianjin, China
| | - Hong-Lian Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin-Hua Lu
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering &Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Zhi-Hui Zheng
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering &Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Gemovic B, Sumonja N, Davidovic R, Perovic V, Veljkovic N. Mapping of Protein-Protein Interactions: Web-Based Resources for Revealing Interactomes. Curr Med Chem 2019; 26:3890-3910. [PMID: 29446725 DOI: 10.2174/0929867325666180214113704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/14/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. OBJECTIVE Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. METHODS We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. RESULTS We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. CONCLUSION PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein-protein complexes for experimental studies.
Collapse
Affiliation(s)
- Branislava Gemovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Neven Sumonja
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Radoslav Davidovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Premnath PN, Craig SN, Liu S, McInnes C. Benzamide capped peptidomimetics as non-ATP competitive inhibitors of CDK2 using the REPLACE strategy. Bioorg Med Chem Lett 2016; 26:3754-60. [PMID: 27297568 DOI: 10.1016/j.bmcl.2016.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022]
Abstract
Inhibition of cyclin dependent kinase 2 (CDK2) in complex with cyclin A in G1/S phase of the cell cycle has been shown to promote selective apoptosis of cancer cells through the E2F1 pathway. An alternative approach to catalytic inhibition is to target the substrate recruitment site also known as the cyclin binding groove (CBG) to generate selective non-ATP competitive inhibitors. The REPLACE strategy has been applied to identify fragment alternatives and substituted benzoic acid derivatives were evaluated as a promising scaffold to present appropriate functionality to mimic key peptide determinants. Fragment Ligated Inhibitory Peptides (FLIPs) are described which potently inhibit both CDK2/cyclin A and CDK4/cyclin D1 and have preliminary anti-tumor activity. A structural rationale for binding was obtained through molecular modeling further demonstrating their potential for further development as next generation non ATP competitive CDK inhibitors.
Collapse
Affiliation(s)
- Padmavathy Nandha Premnath
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Sandra N Craig
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Shu Liu
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
6
|
Beekman AM, O'Connell MA, Howell LA. Identification of Small-Molecule Inhibitors of the Antiapoptotic Protein Myeloid Cell Leukaemia-1 (Mcl-1). ChemMedChem 2016; 11:840-4. [PMID: 26616140 PMCID: PMC4848766 DOI: 10.1002/cmdc.201500488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/21/2022]
Abstract
Protein-protein interactions (PPIs) control many cellular processes in cancer and tumour growth. Of significant interest is the role PPIs play in regulating apoptosis. The overexpression of the antiapoptosis regulating Bcl-2 family of proteins is commonly observed in several cancers, leading to resistance towards both radiation and chemotherapies. From this family, myeloid cell leukemia-1 (Mcl-1) has proven the most difficult to target, and one of the leading causes of treatment resistance. Exploiting the selective PPI between the apoptosis-regulating protein Noxa and Mcl-1, utilising a fluorescence polarization assay, we have identified four small molecules with the ability to modulate Mcl-1. The identified compounds were computationally modelled and docked against the Mcl-1 binding interface to obtain structural information about their binding sites allowing for future analogue design. When examined for their activity towards pancreatic cell lines that overexpress Mcl-1 (MiaPaCa-2 and BxPC-3), the identified compounds demonstrated growth inhibition, suggesting effective Mcl-1 modulation.
Collapse
Affiliation(s)
- Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Lesley A Howell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
7
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
8
|
Nandha Premnath P, Craig S, McInnes C. Development of Inhibitors of Protein-protein Interactions through REPLACE: Application to the Design and Development Non-ATP Competitive CDK Inhibitors. J Vis Exp 2015:e52441. [PMID: 26554946 DOI: 10.3791/52441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
REPLACE is a unique strategy developed to more effectively target protein-protein interactions (PPIs). It aims to expand available drug target space by providing improved methodology for the identification of inhibitors for such binding sites and which represent the majority of potential drug targets. The main goal of this paper is to provide a methodological overview of the use and application of the REPLACE strategy which involves computational and synthetic chemistry approaches. REPLACE is exemplified through its application to the development of non-ATP competitive cyclin dependent kinases (CDK) inhibitors as anti-tumor therapeutics. CDKs are frequently deregulated in cancer and hence are considered as important targets for drug development. Inhibition of CDK2/cyclin A in S phase has been reported to promote selective apoptosis of cancer cells in a p53 independent manner through the E2F1 pathway. Targeting the protein-protein interaction at the cyclin binding groove (CBG) is an approach which will allow the specific inhibition of cell cycle over transcriptional CDKs. The CBG is recognized by a consensus sequence derived from CDK substrates and tumor suppressor proteins termed the cyclin binding motif (CBM). The CBM has previously been optimized to an octapeptide from p21Waf (HAKRRIF) and then further truncated to a pentapeptide retaining sufficient activity (RRLIF). Peptides in general are not cell permeable, are metabolically unstable and therefore the REPLACE (REplacement with Partial Ligand Alternatives through Computational Enrichment) strategy has been applied in order to generate more drug-like inhibitors. The strategy begins with the design of Fragment ligated inhibitory peptides (FLIPs) that selectively inhibit cell cycle CDK/cyclin complexes. FLIPs were generated by iteratively replacing residues of HAKRRLIF/RRLIF with fragment like small molecules (capping groups), starting from the N-terminus (Ncaps), followed by replacement on the C-terminus. These compounds are starting points for the generation of non-ATP competitive CDK inhibitors as anti-tumor therapeutics.
Collapse
Affiliation(s)
| | - Sandra Craig
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina;
| |
Collapse
|
9
|
Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 2015; 25:3420-35. [PMID: 26115571 DOI: 10.1016/j.bmcl.2015.05.100] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/21/2015] [Accepted: 05/30/2015] [Indexed: 02/01/2023]
Abstract
Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described.
Collapse
|
10
|
Premnath PN, Craig SN, Liu S, Anderson EL, Grigoroudis AI, Kontopidis G, Perkins TL, Wyatt MD, Pittman DL, McInnes C. Iterative conversion of cyclin binding groove peptides into druglike CDK inhibitors with antitumor activity. J Med Chem 2014; 58:433-42. [PMID: 25454794 PMCID: PMC4334226 DOI: 10.1021/jm5015023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
The cyclin groove is an important
recognition site for substrates
of the cell cycle cyclin dependent kinases and provides an opportunity
for highly selective inhibition of kinase activity through a non-ATP
competitive mechanism. The key peptide residues of the cyclin binding
motif have been studied in order to precisely define the structure–activity
relationship for CDK kinase inhibition. Through this information,
new insights into the interactions of peptide CDK inhibitors with
key subsites of the cyclin binding groove provide for the replacement
of binding determinants with more druglike functionality through REPLACE,
a strategy for the iterative conversion of peptidic blockers of protein–protein
interactions into pharmaceutically relevant compounds. As a result,
REPLACE is further exemplified in combining optimized peptidic sequences
with effective N-terminal capping groups to generate more stable compounds
possessing antitumor activity consistent with on-target inhibition
of cell cycle CDKs. The compounds described here represent prototypes
for a next generation of kinase therapeutics with high efficacy and
kinome selectivity, thus avoiding problems observed with first generation
CDK inhibitors.
Collapse
Affiliation(s)
- Padmavathy Nandha Premnath
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, South Carolina 29208, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, Valius M. Highlights of the Latest Advances in Research on CDK Inhibitors. Cancers (Basel) 2014; 6:2224-42. [PMID: 25349887 PMCID: PMC4276963 DOI: 10.3390/cancers6042224] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
Uncontrolled proliferation is the hallmark of cancer and other proliferative disorders and abnormal cell cycle regulation is, therefore, common in these diseases. Cyclin-dependent kinases (CDKs) play a crucial role in the control of the cell cycle and proliferation. These kinases are frequently deregulated in various cancers, viral infections, neurodegenerative diseases, ischemia and some proliferative disorders. This led to a rigorous pursuit for small-molecule CDK inhibitors for therapeutic uses. Early efforts to block CDKs with nonselective CDK inhibitors led to little specificity and efficacy but apparent toxicity, but the recent advance of selective CDK inhibitors allowed the first successful efforts to target these kinases for the therapies of several diseases. Major ongoing efforts are to develop CDK inhibitors as monotherapies and rational combinations with chemotherapy and other targeted drugs.
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet' Geneva 4 CH-1211, Switzerland.
| | | | | | | | | | - Algirdas Kaupinis
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| | - Mindaugas Valius
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| |
Collapse
|