1
|
Jha RK, Chhavi, Jaiswal S, Parganiha D, Choudhary V, Saxena D, Maitra R, Singh S, Chopra S, Kumar S. Design, Synthesis, and Antibacterial Activities of Multi-Functional C 2-Functionalized 1,4-Naphthoquinonyl Organoseleniums. Chem Asian J 2025; 20:e202401054. [PMID: 39718003 DOI: 10.1002/asia.202401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 12/25/2024]
Abstract
A practical and efficient reaction for C2-selenylation of 1,4-naphthoquinones has been explored. This coupling reaction of two redox structural motifs, such as 2-bromo-1,4-naphthoquinone with diaryldiselenide/ebselen has been achieved by using sodium borohydride reducing agent at room temperature. Using this approach, several 2-selenylated-1,4-naphthoquinones were obtained in moderate to good yields and thoroughly characterized by multinuclear (1H, 13C, and 77Se) NMR, cyclic voltammetry, and mass spectrometry. Further, light-irradiated thiolation of the synthesized selenazinone was also performed to show the utility of the synthesized compound for post-functionalization. Several 2-selenylated-1,4-naphthoquinones were studied by SC-XRD in which intramolecular Se⋅⋅⋅N (from quinolinyl ligand) non-bonded interactions were observed. Photophysical studies (UV-visible, emission, solvatochromism, and quantum yield) were also performed on selected C2-selenylated naphthoquinones. The naphthoquinonyl organoseleniums were also screened for their antibacterial properties and quinonyl organoselenium 5 d shows good antibacterial potential against S. aureus ATCC 29213 with MIC 0.5 μg/mL and a Selectivity Index of >200. Moreover, it also exhibited equipotent activity against various strains of S. aureus and Enterococcus faecium, including strains resistant to vancomycin and meropenem. From structure-activity correlation, it seems that nice blend of oxidant properties from quinone and antioxidant properties from selenium moiety makes it better candidate for antibacterial activity.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Chhavi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Svastik Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Vishal Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Deepanshi Saxena
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Rahul Maitra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Swechcha Singh
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
2
|
Miranda-Vera C, Hernández ÁP, García-García P, Díez D, García PA, Castro MÁ. Podophyllotoxin: Recent Advances in the Development of Hybridization Strategies to Enhance Its Antitumoral Profile. Pharmaceutics 2023; 15:2728. [PMID: 38140069 PMCID: PMC10747284 DOI: 10.3390/pharmaceutics15122728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Podophyllotoxin is a naturally occurring cyclolignan isolated from rhizomes of Podophyllum sp. In the clinic, it is used mainly as an antiviral; however, its antitumor activity is even more interesting. While podophyllotoxin possesses severe side effects that limit its development as an anticancer agent, nevertheless, it has become a good lead compound for the synthesis of derivatives with fewer side effects and better selectivity. Several examples, such as etoposide, highlight the potential of this natural product for chemomodulation in the search for new antitumor agents. This review focuses on the recent chemical modifications (2017-mid-2023) of the podophyllotoxin skeleton performed mainly at the C-ring (but also at the lactone D-ring and at the trimethoxyphenyl E-ring) together with their biological properties. Special emphasis is placed on hybrids or conjugates with other natural products (either primary or secondary metabolites) and other molecules (heterocycles, benzoheterocycles, synthetic drugs, and other moieties) that contribute to improved podophyllotoxin bioactivity. In fact, hybridization has been a good strategy to design podophyllotoxin derivatives with enhanced bioactivity. The way in which the two components are joined (directly or through spacers) was also considered for the organization of this review. This comprehensive perspective is presented with the aim of guiding the medicinal chemistry community in the design of new podophyllotoxin-based drugs with improved anticancer properties.
Collapse
Affiliation(s)
- Carolina Miranda-Vera
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - Ángela Patricia Hernández
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - Pilar García-García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - David Díez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Pablo Anselmo García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - María Ángeles Castro
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| |
Collapse
|
3
|
Jha RK, Upadhyay A, Kanika, Jain S, K A N, Kumar S. Light-Driven Carbon-Carbon Coupling of α-sp 3-CH of Aliphatic Alcohols with sp 2-CH Bond of 1,4-Naphthoquinones. Org Lett 2022; 24:7605-7610. [PMID: 36227000 DOI: 10.1021/acs.orglett.2c03066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, an α-selective Csp3-H bond functionalization of primary aliphatic alcohols with 1,4-naphthoquinones yielded Csp2-Csp2 coupled products driven by blue-LED light under catalyst, metal, base, and reagent-free conditions. In this transformation, cleavage of three C-H bonds (two sp3-C-H, one sp2-C-H, and one O-H) and four new bonds formed, leading to fluorescent 2-acylated-1,4-naphthohydroquinones.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Aditya Upadhyay
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Kanika
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Saket Jain
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Neena K A
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Sangit Kumar
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| |
Collapse
|
4
|
Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibáñez I, Akiyama T. Radical Hydroalkylation and Hydroacylation of Alkenes by the Use of Benzothiazoline under Thermal Conditions. J Org Chem 2020; 85:12715-12723. [PMID: 32900192 DOI: 10.1021/acs.joc.0c01872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydroalkylation and hydroacylation of electron-deficient alkenes proceeded smoothly by using benzothiazoline derivatives as radical-transfer reagents under thermal conditions without light irradiation or any additive. Both benzyl and benzoyl moieties were transferred efficiently.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Mitsuhiro Toda
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Toshiki Mouri
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Fujii
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kaworuko Moriyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Ignacio Ibáñez
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
5
|
Donoso-Bustamante V, Borrego EA, Schiaffino-Bustamante Y, Gutiérrez DA, Millas-Vargas JP, Fuentes-Retamal S, Correa P, Carrillo I, Aguilera RJ, Miranda D, Chávez-Báez I, Pulgar R, Urra FA, Varela-Ramírez A, Araya-Maturana R. An acylhydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorg Chem 2020; 100:103935. [PMID: 32454391 DOI: 10.1016/j.bioorg.2020.103935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial β-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.
Collapse
Affiliation(s)
- Viviana Donoso-Bustamante
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile
| | - Edgar A Borrego
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | | | - Denisse A Gutiérrez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Pablo Correa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renato J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Dante Miranda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Chávez-Báez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Rodrigo Pulgar
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Armando Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| |
Collapse
|
6
|
Yaseen MA, Mumtaz S, Hunter RL, Wall D, Robertson MJ, Oelgemöller M. Continuous-Flow Photochemical Transformations of 1,4-Naphthoquinones and Phthalimides in a Concentrating Solar Trough Reactor. Aust J Chem 2020. [DOI: 10.1071/ch20138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of photochemical transformations has been successfully conducted under continuous-flow conditions in a concentrating solar trough reactor. Photoacylations and [2+2]-photocycloadditions involving 1,4-naphthoquinones gave the corresponding photoproducts in moderate to high yields with residence times of 70min. Likewise, acetone-sensitized photodecarboxylations involving phthalimides furnished the corresponding benzylated hydroxy phthalimidines in good to excellent yields and purity with residence times of 40min. Compared with corresponding exposures to direct sunlight conducted in a solar float, flow operation generally gave superior conversions and subsequent yields.
Collapse
|
7
|
Martínez-Cifuentes M, Monroy-Cárdenas M, Millas-Vargas JP, Weiss-López BE, Araya-Maturana R. Assessing Parameter Suitability for the Strength Evaluation of Intramolecular Resonance Assisted Hydrogen Bonding in o-Carbonyl Hydroquinones. Molecules 2019; 24:E280. [PMID: 30646498 PMCID: PMC6359028 DOI: 10.3390/molecules24020280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023] Open
Abstract
Intramolecular hydrogen bond (IMHB) interactions have attracted considerable attention due to their central role in molecular structure, chemical reactivity, and interactions of biologically active molecules. Precise correlations of the strength of IMHB's with experimental parameters are a key goal in order to model compounds for drug discovery. In this work, we carry out an experimental (NMR) and theoretical (DFT) study of the IMHB in a series of structurally similar o-carbonyl hydroquinones. Geometrical parameters, as well as Natural Bond Orbital (NBO) and Quantum Theory of Atoms in Molecules (QTAIM) parameters for IMHB were compared with experimental NMR data. Three DFT functionals were employed to calculated theoretical parameters: B3LYP, M06-2X, and ωB97XD. O…H distance is the most suitable geometrical parameter to distinguish among similar IMHBs. Second order stabilization energies ΔEij(2) from NBO analysis and hydrogen bond energy (EHB) obtained from QTAIM analysis also properly distinguishes the order in strength of the studied IMHB. ΔEij(2) from NBO give values for the IMHB below 30 kcal/mol, while EHB from QTAIM analysis give values above 30 kcal/mol. In all cases, the calculated parameters using ωB97XD give the best correlations with experimental ¹H-NMR chemical shifts for the IMHB, with R² values around 0.89. Although the results show that these parameters correctly reflect the strength of the IMHB, when the weakest one is removed from the analysis, arguing experimental considerations, correlations improve significantly to values around 0.95 for R².
Collapse
Affiliation(s)
- Maximiliano Martínez-Cifuentes
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Casilla 9845, Santiago 8940577, Chile.
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| | - Boris E Weiss-López
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
- Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
8
|
Martínez-Cifuentes M, Cardona W, Saitz C, Weiss-López B, Araya-Maturana R. A Study about Regioisomeric Hydroquinones with Multiple Intramolecular Hydrogen Bonding. Molecules 2017; 22:molecules22040593. [PMID: 28387716 PMCID: PMC6153943 DOI: 10.3390/molecules22040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/19/2022] Open
Abstract
A theoretical exploration about hydrogen bonding in a series of synthetic regioisomeric antitumor tricyclic hydroquinones is presented. The stabilization energy for the intramolecular hydrogen bond (IHB) formation in four structurally different situations were evaluated: (a) IHB between the proton of a phenolic hydroxyl group and an ortho-carbonyl group (forming a six-membered ring); (b) between the oxygen atom of a phenolic hydroxyl group and the proton of an hydroxyalkyl group (seven membered ring); (c) between the proton of a phenolic hydroxyl group with the oxygen atom of the hydroxyl group of a hydroxyalkyl moiety (seven-membered ring); and (d) between the proton of a phenolic hydroxyl group and an oxygen atom directly bonded to the aromatic ring in ortho position (five-membered ring). A conformational analysis for the rotation around the hydroxyalkyl substituent is also performed. It is observed that there is a correspondence between the conformational energies and the IHB. The strongest intramolecular hydrogen bonds are those involving a phenolic proton and a carbonyl oxygen atom, forming a six-membered ring, and the weakest are those involving a phenolic proton with the oxygen atom of the chromenone, forming five-membered rings. Additionally, the synthesis and structural assignment of two pairs of regioisomeric hydroquinones, by 2D-NMR experiments, are reported. These results can be useful in the design of biologically-active molecules.
Collapse
Affiliation(s)
- Maximiliano Martínez-Cifuentes
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Casilla 9845, Santiago 8940577, Chile.
| | - Wilson Cardona
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile.
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago 8380494, Chile.
| | - Boris Weiss-López
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| |
Collapse
|
9
|
Nunes LM, Hossain M, Varela-Ramirez A, DAS U, Ayala-Marin YM, Dimmock JR, Aguilera RJ. A novel class of piperidones exhibit potent, selective and pro-apoptotic anti-leukemia properties. Oncol Lett 2016; 11:3842-3848. [PMID: 27313705 DOI: 10.3892/ol.2016.4480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
In the present pre-clinical study, a series of 1-[3-(2-methoxyethylthio)-propionyl]-3,5- bis(benzylidene)-4 piperidones and structurally-related compounds were observed to be cytotoxic in vitro to three human leukemia cell lines, namely Nalm-6, CEM and Jurkat. The 50% cytotoxic concentration (CC50) values of the three cell lines ranged between 0.9-126.4 µM and 0.3-11.7 µM at 24 and 48 h subsequent to exposure, respectively. The two lead compounds with sub-micromolar CC50 concentrations, 1-(2-methoxyethylthio-propionyl)-3,5-bis(benzylidene)-4 piperidone (2a) and 3,5-bis(4-fluorobenzylidene)-1-[3-(2-methoxyethyl sulfinyl)-propionyl]-4-piperidone (3e), were selected for additional analyses. Several strategies were undertaken to determine whether the above piperidones caused cell death via apoptosis or necrosis on T-lymphocyte leukemia Jurkat cells. The results revealed that the two piperidones caused phosphatidylserine externalization, mitochondrial depolarization and activation of caspase-3, which are all biochemical hallmarks of apoptosis. In addition, the selected piperidones displayed selective cytotoxicity towards leukemia cells, and were less toxic in non-cancerous control cells. Therefore, the findings of the present study revealed that the novel piperidones 2a and 3e exert a selective cytotoxic effect on lymphocyte leukemia cells by favoring the activation of the intrinsic/mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Larissa M Nunes
- Cytometry, Imaging and Screening Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Mohammad Hossain
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Armando Varela-Ramirez
- Cytometry, Imaging and Screening Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Umashankar DAS
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Yoshira M Ayala-Marin
- Cytometry, Imaging and Screening Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Jonathan R Dimmock
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Renato J Aguilera
- Cytometry, Imaging and Screening Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
10
|
Robles-Escajeda E, Das U, Ortega NM, Parra K, Francia G, Dimmock JR, Varela-Ramirez A, Aguilera RJ. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell Oncol (Dordr) 2016; 39:265-77. [PMID: 26920032 DOI: 10.1007/s13402-016-0272-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE According to the World Health Organization (WHO), breast cancer is the most common cancer affecting women worldwide. In the USA ~12.3 % of all women are expected to be diagnosed with various types of breast cancer, exhibiting varying degrees of therapeutic response rates. Therefore, the identification of novel anti-breast cancer drugs is of paramount importance. METHODS The 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was incorporated into a number of cytotoxins. Three of the resulting dienones, 2a, 2b and 2c, were tested for their anti-neoplastic potencies in a variety of human breast cancer-derived cell lines, including the triple negative MDA-MB-231 cell line and its metastatic variant, using a live-cell bio-imaging method. Special emphasis was put on dienone 2c, since its anti-cancer activity and its mode of inflicting cell death have so far not been reported. RESULTS We found that all three dienones exhibited potent cytotoxicities towards the breast cancer-derived cell lines tested, whereas significantly lower toxicities were observed towards the non-cancerous human breast cell line MCF-10A. The dienones 2b and 2c exhibited the greatest selective cytotoxicity at submicromolar concentration levels. We found that these two dienones induced phosphatidylserine externalization in MDA-MB-231 cells in a concentration-dependent manner, suggesting that their cytotoxic effect might be mediated by apoptosis. This possibility was confirmed by our observation that the dienone 2c can induce mitochondrial depolarization, caspase-3 activation, cell cycle disruption and DNA fragmentation in MDA-MB-231 cells. CONCLUSION Our findings indicate that dienone 2c uses the mitochondrial/intrinsic pathway to inflict apoptosis in triple negative MDA-MB-231 breast cancer-derived cells. This observation warrants further assessment of dienone 2c as a potential anti-breast cancer drug.
Collapse
Affiliation(s)
- Elisa Robles-Escajeda
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Umashankar Das
- Drug Discovery & Development Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Nora M Ortega
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Karla Parra
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Giulio Francia
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Jonathan R Dimmock
- Drug Discovery & Development Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Armando Varela-Ramirez
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA.
| | - Renato J Aguilera
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA.
| |
Collapse
|
11
|
Urra FA, Córdova-Delgado M, Lapier M, Orellana-Manzano A, Acevedo-Arévalo L, Pessoa-Mahana H, González-Vivanco JM, Martínez-Cifuentes M, Ramírez-Rodríguez O, Millas-Vargas JP, Weiss-López B, Pavani M, Ferreira J, Araya-Maturana R. Small structural changes on a hydroquinone scaffold determine the complex I inhibition or uncoupling of tumoral oxidative phosphorylation. Toxicol Appl Pharmacol 2015; 291:46-57. [PMID: 26712467 DOI: 10.1016/j.taap.2015.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria participate in several distinctiveness of cancer cell, being a promising target for the design of anti-cancer compounds. Previously, we described that ortho-carbonyl hydroquinone scaffold 14 inhibits the complex I-dependent respiration with selective anti-proliferative effect on mouse mammary adenocarcinoma TA3/Ha cancer cells; however, the structural requirements of this hydroquinone scaffold to affect the oxidative phosphorylation (OXPHOS) of cancer cells have not been studied in detail. Here, we characterize the mitochondrial metabolism of TA3/Ha cancer cells, which exhibit a high oxidative metabolism, and evaluate the effect of small structural changes of the hydroquinone scaffold 14 on the respiration of this cell line. Our results indicate that these structural changes modify the effect on OXPHOS, obtaining compounds with three alternative actions: inhibitors of complex I-dependent respiration, uncoupler of OXPHOS and compounds with both actions. To confirm this, the effect of a bicyclic hydroquinone (9) was evaluated in isolated mitochondria. Hydroquinone 9 increased mitochondrial respiration in state 4o without effects on the ADP-stimulated respiration (state 3ADP), decreasing the complexes I and II-dependent respiratory control ratio. The effect on mitochondrial respiration was reversed by 6-ketocholestanol addition, indicating that this hydroquinone is a protonophoric uncoupling agent. In intact TA3/Ha cells, hydroquinone 9 caused mitochondrial depolarization, decreasing intracellular ATP and NAD(P)H levels and GSH/GSSG ratio, and slightly increasing the ROS levels. Moreover, it exhibited selective NAD(P)H availability-dependent anti-proliferative effect on cancer cells. Therefore, our results indicate that the ortho-carbonyl hydroquinone scaffold offers the possibility to design compounds with specific actions on OXPHOS of cancer cells.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile.
| | - Miguel Córdova-Delgado
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Michel Lapier
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile
| | - Andrea Orellana-Manzano
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile
| | - Luis Acevedo-Arévalo
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Jaime M González-Vivanco
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | | | - Oney Ramírez-Rodríguez
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Juan Pablo Millas-Vargas
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Boris Weiss-López
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Mario Pavani
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile
| | - Jorge Ferreira
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile.
| |
Collapse
|