1
|
Ganesh BH, Raj AG, Aruchamy B, Nanjan P, Drago C, Ramani P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024; 19:e202300447. [PMID: 37926686 DOI: 10.1002/cmdc.202300447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.
Collapse
Affiliation(s)
- Bharathi Hassan Ganesh
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Anirudh G Raj
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Pandurangan Nanjan
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry CNR, via Paolo Gaifami 18, 95126, Catania, Italy
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
2
|
Varamogianni-Mamatsi D, Nunes MJ, Marques V, Anastasiou TI, Kagiampaki E, Vernadou E, Dailianis T, Kalogerakis N, Branco LC, Rodrigues CMP, Sobral RG, Gaudêncio SP, Mandalakis M. Comparative Chemical Profiling and Antimicrobial/Anticancer Evaluation of Extracts from Farmed versus Wild Agelas oroides and Sarcotragus foetidus Sponges. Mar Drugs 2023; 21:612. [PMID: 38132933 PMCID: PMC10744379 DOI: 10.3390/md21120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Despoina Varamogianni-Mamatsi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Maria João Nunes
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Eirini Kagiampaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Emmanouela Vernadou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Thanos Dailianis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
| | - Luís C. Branco
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Manolis Mandalakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| |
Collapse
|
3
|
Mahamed S, Motal R, Govender T, Dlamini N, Khuboni K, Hadeb Z, Shaik BB, Moodley K, Balaso Mohite S, Karpoormath R. A concise review on marine bromopyrrole alkaloids as anticancer agents. Bioorg Med Chem Lett 2023; 80:129102. [PMID: 36496202 DOI: 10.1016/j.bmcl.2022.129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Natural products have been the most important sources of chemically diverse raw materials that have inspired pharmaceutical discoveries over the past few decades. Many pharmaceutical companies are utilizing plant extracts to develop relatively crude therapeutic formulations. The interesting chemicals identified as natural products are derived from the phenomenon of biodiversity, where the interactions between the organisms and their environment formulate the diverse and complex chemical entities within them that enhance their survival and competitiveness. Marine sponges are rich sources of natural products and have provided an infinite supply of bioactive metabolites. Bromopyrrole alkaloids are a good example of marine metabolites, have a broad range of biological activity, and represent a fascinating example of chemical diversity of secondary metabolites elaborated by marine invertebrates. The isolation and synthesis of this structural class have been investigated, resulting in a series of bromopyrrole alkaloids with potential lead hits. This review presents the detailed isolation and anticancer activity of marine bromopyrrole alkaloids, and will be of interest to the wider research community both in academic and industrial settings.
Collapse
Affiliation(s)
- Safia Mahamed
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Raeesa Motal
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Titus Govender
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Nompilo Dlamini
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Kwanele Khuboni
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Zamahlubi Hadeb
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Baji Baba Shaik
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Kimeshni Moodley
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa.
| |
Collapse
|
4
|
Gémes N, Makra Z, Neuperger P, Szabó E, Balog JÁ, Flink LB, Kari B, Hackler L, Puskás LG, Kanizsai I, Szebeni GJ. A cytotoxic survey on
2‐amino‐1H‐imidazol
based synthetic marine sponge alkaloid analogues. Drug Dev Res 2022; 83:1906-1922. [PMID: 36322473 PMCID: PMC10091778 DOI: 10.1002/ddr.22006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Here, we describe the synthesis and biologic activity evaluation of 20 novel synthetic marine sponge alkaloid analogues with 2-amino-1H-imidazol (2-AI) core. Cytotoxicity was tested on murine 4T1 breast cancer, A549 human lung cancer, and HL-60 human myeloid leukemia cells by the resazurin assay. A total of 18 of 20 compounds showed cytotoxic effect on the cancer cell lines with different potential. Viability of healthy human fibroblasts and peripheral blood mononuclear cells upon treatment was less hampered compared to cancer cell lines supporting tumor cell specific cytotoxicity of our compounds. The most cytotoxic compounds resulted the following IC50 values 28: 2.91 µM on HL-60 cells, and 29: 3.1 µM on 4T1 cells. The A549 cells were less sensitive to the treatments with IC50 15 µM for both 28 and 29. Flow cytometry demonstrated the apoptotic effect of the most active seven compounds inducing phosphatidylserine exposure and sub-G1 fragmentation of nuclear DNA. Cell cycle arrest was also observed. Four compounds caused depolarization of the mitochondrial membrane potential as an early event of apoptosis. Two lead compounds inhibited tumor growth in vivo in the 4T1 triple negative breast cancer and A549 human lung adenocarcinoma xenograft models. Novel marine sponge alkaloid analogues are demonstrated as potential anticancer agents for further development.
Collapse
Affiliation(s)
- Nikolett Gémes
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
- PhD School in Biology University of Szeged Szeged Hungary
| | | | - Patrícia Neuperger
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
| | - Enikő Szabó
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology University of Szeged Szeged Hungary
| | | | | | - László. G. Puskás
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
- Avidin Ltd Szeged Hungary
| | | | - Gábor J. Szebeni
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics University of Szeged Szeged Hungary
| |
Collapse
|
5
|
Wang L, Marner M, Mettal U, Liu Y, Schäberle TF. Seven New Alkaloids Isolated from Marine Flavobacterium Tenacibaculum discolor sv11. Mar Drugs 2022; 20:md20100620. [PMID: 36286444 PMCID: PMC9605681 DOI: 10.3390/md20100620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Marine flavobacterium Tenacibaculum discolor sv11 has been proven to be a promising producer of bioactive nitrogen-containing heterocycles. A chemical investigation of T. discolor sv11 revealed seven new heterocycles, including the six new imidazolium-containing alkaloids discolins C-H (1−6) and one pyridinium-containing alkaloid dispyridine A (7). The molecular structure of each compound was elucidated by analysis of NMR and HR-ESI-MS data. Furthermore, enzymatic decarboxylation of tryptophan and tyrosine to tryptamine and tyramine catalyzed by the decarboxylase DisA was investigated using in vivo and in vitro experiments. The antimicrobial activity of the isolated compounds (1−7) was evaluated. Discolin C and E (1 and 3) exhibited moderate activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600 and Staphylococcus aureus ATCC25923, with MIC values ranging from 4 μg/mL to 32 μg/mL.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany
- Correspondence: (Y.L.); (T.F.S.); Tel.: +49-(0)641-97219-140 (T.F.S.)
| | - Till F. Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
- Correspondence: (Y.L.); (T.F.S.); Tel.: +49-(0)641-97219-140 (T.F.S.)
| |
Collapse
|
6
|
Bacillimidazoles A-F, Imidazolium-Containing Compounds Isolated from a Marine Bacillus. Mar Drugs 2022; 20:md20010043. [PMID: 35049898 PMCID: PMC8779896 DOI: 10.3390/md20010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Chemical investigations of a marine sponge-associated Bacillus revealed six new imidazolium-containing compounds, bacillimidazoles A-F (1-6). Previous reports of related imidazolium-containing natural products are rare. Initially unveiled by timsTOF (trapped ion mobility spectrometry) MS data, extensive HRMS and 1D and 2D NMR analyses enabled the structural elucidation of 1-6. In addition, a plausible biosynthetic pathway to bacillimidazoles is proposed based on isotopic labeling experiments and invokes the highly reactive glycolytic adduct 2,3-butanedione. Combined, the results of structure elucidation efforts, isotopic labeling studies and bioinformatics suggest that 1-6 result from a fascinating intersection of primary and secondary metabolic pathways in Bacillus sp. WMMC1349. Antimicrobial assays revealed that, of 1-6, only compound six displayed discernible antibacterial activity, despite the close structural similarities shared by all six natural products.
Collapse
|
7
|
Di Cesare Mannelli L, Palma Esposito F, Sangiovanni E, Pagano E, Mannucci C, Polini B, Ghelardini C, Dell’Agli M, Izzo AA, Calapai G, de Pascale D, Nieri P. Pharmacological Activities of Extracts and Compounds Isolated from Mediterranean Sponge Sources. Pharmaceuticals (Basel) 2021; 14:ph14121329. [PMID: 34959729 PMCID: PMC8715745 DOI: 10.3390/ph14121329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Marine pharmacology is an exciting and growing discipline that blends blue biotechnology and natural compound pharmacology together. Several sea-derived compounds that are approved on the pharmaceutical market were discovered in sponges, marine organisms that are particularly rich in bioactive metabolites. This paper was specifically aimed at reviewing the pharmacological activities of extracts or purified compounds from marine sponges that were collected in the Mediterranean Sea, one of the most biodiverse marine habitats, filling the gap in the literature about the research of natural products from this geographical area. Findings regarding different Mediterranean sponge species were individuated, reporting consistent evidence of efficacy mainly against cancer, infections, inflammatory, and neurological disorders. The sustainable exploitation of Mediterranean sponges as pharmaceutical sources is strongly encouraged to discover new compounds.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
- Correspondence:
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.P.E.); (D.d.P.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (M.D.)
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.P.); (A.A.I.)
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (G.C.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (P.N.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (M.D.)
| | - Angelo Antonio Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.P.); (A.A.I.)
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (G.C.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.P.E.); (D.d.P.)
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (P.N.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
8
|
Santoso M, Fadlan A, Fahmi MRG, Rahmayanti A. Synthesis and in vitro cytotoxicity evaluation of isatin-pyrrole derivatives against HepG2 cell line. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This paper reports the synthesis and in vitro cytotoxicity evaluation of isatin-pyrrole derivatives 5–8, obtained from the appropriate isatins with pyrrole, with good yields and purity. The product structures were confirmed through spectroscopy methods. Furthermore, the MTT assay on the human liver cancer HepG2 cell lines revealed moderate activity in all compounds, which was highest in sample 6 (IC50 0.47 µM). The anticancer activity was affiliated with the presence of a nitro group at C-5 and N-methyl of the isatin scaffold.
Collapse
Affiliation(s)
- Mardi Santoso
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember , Kampus ITS Sukolilo , Surabaya , 60111 , Indonesia
| | - Arif Fadlan
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember , Kampus ITS Sukolilo , Surabaya , 60111 , Indonesia
| | - Muhammad Riza Ghulam Fahmi
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung , Villa Puncak Tidar N-01 , Malang , 65151 , Indonesia
| | - Ardhana Rahmayanti
- Department of Environmental Engineering, Faculty of Engineering, Universitas Nahdlatul 10 Ulama Sidoarjo , Jl. Monginsidi Dalam KAV DPR, Sidoklumpuk , Sidoarjo , 61218 , Indonesia
| |
Collapse
|
9
|
Elissawy AM, Soleiman Dehkordi E, Mehdinezhad N, Ashour ML, Mohammadi Pour P. Cytotoxic Alkaloids Derived from Marine Sponges: A Comprehensive Review. Biomolecules 2021; 11:258. [PMID: 33578987 PMCID: PMC7916819 DOI: 10.3390/biom11020258] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Marine sponges (porifera) have proved to be a prolific source of unique bioactive secondary metabolites, among which the alkaloids occupy a special place in terms of unprecedented structures and outstanding biological activities. Identification of active cytotoxic alkaloids extracted from marine animals, particularly sponges, is an important strive, due to lack of knowledge on traditional experiential and ethnopharmacology investigations. In this report, a comprehensive survey of demospongian bioactive alkaloids in the range 1987-2020 had been performed with a special emphasis on the potent cytotoxic activity. Different resources and databases had been investigated, including Scifinder (database for the chemical literature) CAS (Chemical Abstract Service) search, web of science, Marin Lit (marine natural products research) database. More than 230 representatives of different classes of alkaloids had been reviewed and classified, different genera belonging to the phylum porifera had been shown to be a prolific source of alkaloidal molecules, including Agelas sp., Suberea sp., Mycale sp., Haliclona sp., Epipolasis sp., Monanchora sp., Crambe sp., Reniera sp., and Xestospongia sp., among others. The sufficient production of alkaloids derived from sponges is a prosperous approach that requires more attention in future studies to consider the constraints regarding the supply of drugs, attained from marine organisms.
Collapse
Affiliation(s)
- Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (A.M.E.); (M.L.A.)
| | - Ebrahim Soleiman Dehkordi
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord 88157-13471, Iran;
| | - Negin Mehdinezhad
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (A.M.E.); (M.L.A.)
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| |
Collapse
|
10
|
Tolan HEM, Radwan MAA, Khalaf HS, El-Bayaa MN, Awad HM, El-Sayed WA. Synthesis and Cytotoxic Activity of New
1,4-Dithiazolyl-5-oxopyrrole Derivatives, Their 1,2,4-Triazoles and Nucleoside
Analogs. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220080241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
12
|
Vengatesh G, Sundaravadivelu M, Muthusubramanian S. Iodine mediated rearrangement of tetraarylpiperidin-4-ones: Synthesis, structure analysis and biological studies of 5-aryl-2-methoxy-2,4-diphenyl-1H-pyrrole-3-ones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Targeting acquired oncogenic burden in resilient pancreatic cancer: a novel benefit from marine polyphenols. Mol Cell Biochem 2019; 460:175-193. [PMID: 31367889 DOI: 10.1007/s11010-019-03579-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
The upsurge of marine-derived therapeutics for cancer treatment is evident, with many drugs in clinical use and in clinical trials. Seaweeds harbor large amounts of polyphenols and their anti-cancer benefit is linear to their anti-oxidant activity. Our studies identified three superlative anti-cancer seaweed polyphenol drug candidates (SW-PD). We investigated the acquisition of oncogenic burden in radiation-resilient pancreatic cancer (PC) that could drive tumor relapse, and elucidated the efficacy of SW-PD candidates as adjuvants in genetically diverse in vitro systems and a mouse model of radiation-residual disease. QPCR profiling of 88 oncogenes in therapy-resilient PC cells identified a 'shared' activation of 40 oncogenes. SW-PD pretreatment inflicted a significant mitigation of acquired (shared) oncogenic burden, in addition to drug- and cell-line-specific repression signatures. Tissue microarray with IHC of radiation-residual tumors in mice signified acquired cellular localization of key oncoproteins and other critical architects. Conversely, SW-PD treatment inhibited the acquisition of these critical drivers of tumor genesis, dissemination, and evolution. Heightened death of resilient PC cells with SW-PD treatment validated the translation aspects. The results defined the acquisition of oncogenic burden in resilient PC and demonstrated that the marine polyphenols effectively target the acquired oncogenic burden and could serve as adjuvant(s) for PC treatment.
Collapse
|
14
|
Gang FL, Zhu F, Li XT, Wei JL, Wu WJ, Zhang JW. Synthesis and bioactivities evaluation of l-pyroglutamic acid analogues from natural product lead. Bioorg Med Chem 2018; 26:4644-4649. [DOI: 10.1016/j.bmc.2018.07.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
15
|
Radiosensitization by Marine Sponge Agelas sp. Extracts in Hepatocellular Carcinoma Cells with Autophagy Induction. Sci Rep 2018; 8:6317. [PMID: 29679028 PMCID: PMC5910397 DOI: 10.1038/s41598-018-24745-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Although radiation therapy is an effective treatment modality in many cancers, there is an urgent need to develop therapeutic drugs capable of overcoming radioresistance or minimizing normal tissue toxicity. A wide variety of marine-derived bioactive compounds have been screened for anti-cancer drug discovery, but little is known regarding radiation therapy applications. In this study, six different extracts of marine sponges collected from the Micronesian sea were screened for anti-cancer and radiosensitizing activity. Two extracts derived from Agelas sponges collected off the coast of Kosrae and Chuuk, the Federated States of Micronesia significantly decreased clonogenic survival of hepatocellular carcinoma (HCC) cells after exposure to ionizing radiation (IR). The Agelas extracts augmented IR-induced apoptosis and accumulation of reactive oxygen species (ROS). Endoplasmic reticulum (ER) stress was increased via unfolded protein response stimulation, which induced autophagy. N-acetylcysteine, a ROS scavenger, diminished ER stress and autophagy induction effects. This result indicated that Agelas extracts may sensitize HCC cells to IR via ROS overproduction in vitro. Our findings suggest that the Agelas sp. may have potential utility in radiosensitizer development.
Collapse
|
16
|
Ghods A, Gilbert J, Baker JR, Russell CC, Sakoff JA, McCluskey A. A focused library synthesis and cytotoxicity of quinones derived from the natural product bolinaquinone. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171189. [PMID: 29765626 PMCID: PMC5936891 DOI: 10.1098/rsos.171189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Bolinaquinone is a natural product that is a structurally complex, cytotoxic sesquiterpene quinone. A scaffold simplification and focused library approach using a microwave-assisted Suzuki coupling gave 32 bolinaquinone analogues with good-to-excellent cytotoxicity profiles. Mono-arylbenzoquinones, Library A, were preferentially toxic towards BE2-C (neuroblastoma) cells with growth inhibition (GI50) values of 4-12 µM; only the 3,4-dimethoxyphenyl 23 and 3-biphenyl 28 variants were broad-spectrum active-HT29 (colon carcinoma), U87 and SJ-G2 (glioblastoma), MCF-7 (breast carcinoma), A2780 (ovarian carcinoma), H460 (lung carcinoma), A431 (skin carcinoma), Du145 (prostate carcinoma), BE2-C (neuroblastoma), MIA (pancreatic carcinoma) and SMA (spontaneous murine astrocytoma). Library B with a second aryl moiety exhibited broad-spectrum cytotoxicity with MCF-7 cells' GI50 values of 5.6 ± 0.7 and 5.1 ± 0.5 µM for 2,5-dimethoxy-3-(naphthalene-1-yl)-6-(naphthalene-3-yl) 33 and 2,5-dimethoxy-3-(biaryl-2-yl)-6-(naphthalene-3-yl) 36, respectively. Similar potencies were also noted with 2,5-dimethoxy-3,6-diphenyl 30 against A2780 (GI50 = 5.9 ± 0.0 µM) and with 2,5-dimethoxy-3-(biaryl-3-yl)-6-(naphthalene-3-yl) 37 against HT29 (GI50 = 5.4 ± 0.4 µM), while the 3,4-dimethoxy mono-aryl analogue 23 exhibited good levels of activity against A2780 (GI50 = 3.8 ± 0.75 µM), the neuroblastoma cell line BE2-C (GI50 = 3 ± 0.35 µM) and SMA (GI50 = 3.9 ± 0.54 µM). Introduction of the amino-substituted Library C gave 2-(naphthalen-1-yl)-5-(naphthalen-3-yl)-3,6-bis(propylamino) 43, with excellent activity against HT29 (0.08 ± 0.0 µM), MCF-7 (0.17 ± 0.1 µM), A2780 (0.14 ± 0.1 µM), A431 (0.11 ± 0.0 µM), Du145 (0.16 ± 0.1 µM), BE2-C (0.08 ± 0.0 µM) and MIA (0.1 ± 0.0 µM).
Collapse
Affiliation(s)
- Azadeh Ghods
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| | - Jayne Gilbert
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| | - Jennifer R. Baker
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| | - Cecilia C. Russell
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| | - Jennette A. Sakoff
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| | - Adam McCluskey
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
17
|
Abstract
Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 869-915The structurally diverse imidazole-, oxazole-, and thiazole-containing secondary metabolites are widely distributed in terrestrial and marine environments, and exhibit extensive pharmacological activities. In this review the latest progress involving the isolation, biological activities, and chemical and biogenetic synthesis studies on these natural products has been summarized.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
18
|
Mane YD, Surwase SM, Biradar DO, Sarnikar YP, Jawle BH, Shinde VS, Khade BC. Design and Synthesis of Diverse Pyrrole-2-carboxamide Derivatives as a Potent Antibacterial Agents. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogesh D. Mane
- Shri Chhatrapati Shivaji College; Omerga Dist-Osmanabad, M.S. India
| | | | | | | | - Balaji H. Jawle
- Arts, Science and Commerce College; Makni Dist-Osmanabad, M.S. India
| | - Vishnu S. Shinde
- Shri Chhatrapati Shivaji College; Omerga Dist-Osmanabad, M.S. India
| | | |
Collapse
|
19
|
Zhan XP, Lan L, Wang S, Zhao K, Xin YX, Qi Q, Wang YL, Mao ZM. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/28/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Xiao-Ping Zhan
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Lan Lan
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Shuai Wang
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kai Zhao
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yu-Xuan Xin
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Qi Qi
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yao-Lin Wang
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhen-Min Mao
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
20
|
Lindel T. Chemistry and Biology of the Pyrrole–Imidazole Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2017; 77:117-219. [DOI: 10.1016/bs.alkal.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Li Y, Lei J, Chen ZZ, Tang DY, Yuan H, Wang M, Zhu J, Xu ZG. Microwave-Assisted Construction of Pyrrolopyridinone Ring Systems by Using an Ugi/Indole Cyclization Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Li
- Key Laboratory for Asymmetric Synthesis and Chiral Technology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; 610041 Chengdu China
| | - Jie Lei
- Key Laboratory for Asymmetric Synthesis and Chiral Technology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; 610041 Chengdu China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine; IATTI; Chongqing University of Arts and Sciences; 319 Honghe Ave. 402160 Yongchuan Chongqing China
| | - Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine; IATTI; Chongqing University of Arts and Sciences; 319 Honghe Ave. 402160 Yongchuan Chongqing China
| | - Dian-Yong Tang
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine; IATTI; Chongqing University of Arts and Sciences; 319 Honghe Ave. 402160 Yongchuan Chongqing China
| | - Huan Yuan
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine; IATTI; Chongqing University of Arts and Sciences; 319 Honghe Ave. 402160 Yongchuan Chongqing China
| | - Miao Wang
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine; IATTI; Chongqing University of Arts and Sciences; 319 Honghe Ave. 402160 Yongchuan Chongqing China
| | - Jin Zhu
- Key Laboratory for Asymmetric Synthesis and Chiral Technology of Sichuan Province; Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; 610041 Chengdu China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine; IATTI; Chongqing University of Arts and Sciences; 319 Honghe Ave. 402160 Yongchuan Chongqing China
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine; IATTI; Chongqing University of Arts and Sciences; 319 Honghe Ave. 402160 Yongchuan Chongqing China
| |
Collapse
|
22
|
Gholap SS. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 2015; 110:13-31. [PMID: 26807541 DOI: 10.1016/j.ejmech.2015.12.017] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Pyrrole derivatives comprise a class of biologically active heterocyclic compounds which can serve as promising scaffolds for antimicrobial, antiviral, antimalarial, antitubercular, anti-inflammatory and enzyme inhibiting drugs. Due to their inimitable anticancer and anti-tubercular properties, researchers were inspired to develop novel pyrrole derivatives for the treatment of MDR pathogens. In the present review the main target is to focus on the development of pyrrole mimics, with emphasis based on their structure activity relationship (SAR). The present review is being obliging for the future development of pyrrole therapeutics.
Collapse
Affiliation(s)
- Somnath S Gholap
- Department of Chemistry, Padmashri Vikhe Patil College, Pravaranagar (Loni kd.), Rahata, Ahmednagar, 413713, Maharashtra, India.
| |
Collapse
|
23
|
Qian PY, Li Z, Xu Y, Li Y, Fusetani N. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. BIOFOULING 2015; 31:101-22. [PMID: 25622074 DOI: 10.1080/08927014.2014.997226] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review covers 214 marine natural compounds and 23 of their synthetic analogs, which were discovered and/or synthesized from mid-2009 to August 2014. The antifouling (AF) compounds reported have medium to high bioactivity (with a threshold of EC(50) < 15.0 mg ml(-1)). Among these compounds, 82 natural compounds were identified as new structures. All the compounds are marine-derived, demonstrating that marine organisms are prolific and promising sources of natural products that may be developed as environmentally friendly antifoulants. However, this mini-review excludes more than 200 compounds that were also reported as AF compounds but with rather weak bioactivity during the same period. Also excluded are terrestrial-derived AF compounds reported during the last five years. A brief discussion on current challenges in AF compound research is also provided to reflect the authors' own views in terms of future research directions.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- a Division of Life Science , Hong Kong University of Science and Technology , HKSAR , PR China
| | | | | | | | | |
Collapse
|
24
|
Bonacorso HG, Moraes MC, Luz FM, Quintana PS, Zanatta N, Martins MA. New solventless and metal-free synthesis of the antiepileptic drug 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (Rufinamide) and analogues. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Rane RA, Naphade SS, Bangalore PK, Palkar MB, Patel HM, Shaikh MS, Alwan WS, Karpoormath R. Synthesis of Novel Hybrids Inspired from Bromopyrrole Alkaloids Inhibiting MMP-2 and -12 as Antineoplastic Agents. Chem Biol Drug Des 2014; 86:210-22. [DOI: 10.1111/cbdd.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 11/16/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Rajesh A. Rane
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | | | - Pavan Kumar Bangalore
- S. P. P. School of Pharmacy and Technology Management; NMIMS University; Vile Parle, Mumbai India
| | - Mahesh B. Palkar
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Harun M. Patel
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Mahamadhanif S. Shaikh
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Wesam S. Alwan
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Rajshekhar Karpoormath
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| |
Collapse
|
26
|
Çetinkaya Y, Balci M. Selective synthesis of N-substituted pyrrolo[1,2-a]pyrazin-1(2H)-one derivatives via alkyne cyclization. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|