1
|
Taniguchi Y, Sagara I, Nagata Y, Kikukawa Y, Sasaki S. Effects of the 2-Substituted Adenosine-1,3-diazaphenoxazine 5'-Triphosphate Derivatives on the Single Nucleotide Primer Extension Reaction by DNA Polymerase. Chem Pharm Bull (Tokyo) 2019; 67:1123-1130. [PMID: 31582632 DOI: 10.1248/cpb.c19-00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adenosine triphosphate derivatives of 2-oxo-1,3-diazaphenoxazine (dAdapTP) showed a significant discrimination ability for the template strand including that between 8-oxo-2'-deoxyguanosine (8-oxodG) and 2'-deoxyguanosine (dG) by the single nucleotide primer extension reaction using the Klenow Fragment. In this study, we synthesized new dAdapTP derivatives, i.e., 2-amino-dAdapTP, 2-chloro-dAdapTP and 2-iodo-dAdapTP, to investigate the effect on the selectivity and efficiency of incorporation for the primer extension reaction using a variety of DNA polymerases. In contrast to the previously tested dAdapTP, the selectivity and efficiency of the 2-halo-dAdapTP incorporation were dramatically decreased using the Klenow Fragment. Moreover, the efficiency of the 2-amino-dAdapTP incorporation into the T-containing template was almost the same with that of dAdapTP. In the case of the Bsu DNA polymerase, the efficiency of all the dAdapTP derivatives decreased compared to that using the Klenow Fragment. However, the incorporation selectivity of dAdapTP had improved against the oxodG-containing template for all the template sequences including the T-containing template. Moreover, 2-amino-dAdapTP showed a better efficiency than dAdapTP using the Bsu DNA polymerase. The 2-amino group of the adenosine unit may interact with syn-oxodG at the active site of the Bsu DNA polymerase during the single primer extension reaction.
Collapse
Affiliation(s)
| | - Ikuko Sagara
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yusuke Nagata
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
2
|
Sasaki S. Development of Novel Functional Molecules Targeting DNA and RNA. Chem Pharm Bull (Tokyo) 2019; 67:505-518. [PMID: 31155555 DOI: 10.1248/cpb.c19-00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleic acid therapeutics such as antisense and small interfering RNA (siRNA) have attracted increasing attention as innovative medicines that interfere with and/or modify gene expression systems. We have developed new functional oligonucleotides that can target DNA and RNA with high efficiency and selectivity. This review summarizes our achievements, including (1) the formation of non-natural triplex DNA for sequence-specific inhibition of transcription; (2) artificial receptor molecules for 8-oxidized-guanosine nucleosides; and (3) reactive oligonucleotides with a cross-linking agent or a functionality-transfer nucleoside for RNA pinpoint modification.
Collapse
Affiliation(s)
- Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
3
|
Venkatesham A, Pillalamarri SR, De Wit F, Lescrinier E, Debyser Z, Van Aerschot A. Propargylated Purine Deoxynucleosides: New Tools for Fluorescence Imaging Strategies. Molecules 2019; 24:molecules24030468. [PMID: 30696094 PMCID: PMC6384747 DOI: 10.3390/molecules24030468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
In vivo imaging of biological processes is an important asset of modern cell biology. Selectively reacting fluorophores herein are an important tool and click chemistry reactions take a large share in these events. 5-Ethynyl-2′-deoxyuridine (EdU) is well known for visualizing DNA replication, but does not show any selectivity for incorporation into DNA. Striving for specific visualization of virus replication, in particular HIV replication, a series of propargylated purine deoxynucleosides were prepared aiming for selective incorporation by HIV reverse transcriptase (RT). We here report on the synthesis and preliminary biological effects (cellular toxicity, HIV inhibitory effects, and feasibility of the click reaction) of these nucleoside analogues.
Collapse
Affiliation(s)
- Akkaladevi Venkatesham
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Sambasiva Rao Pillalamarri
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Flore De Wit
- Laboratory for Molecular Virology and Gene Therapy, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, Dept. of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Antiviral activity spectrum of phenoxazine nucleoside derivatives. Antiviral Res 2019; 163:117-124. [PMID: 30684562 DOI: 10.1016/j.antiviral.2019.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
The phenoxazine scaffold is widely used to stabilize nucleic acid duplexes, as a part of fluorescent probes for the study of nucleic acid structure, recognition, and metabolism, etc. Here we present the synthesis of phenoxazine-based nucleoside derivatives and their antiviral activity against a panel of structurally diverse viruses: enveloped DNA herpesviruses varicella zoster virus (VZV) and human cytomegalovirus, enveloped RNA tick-borne encephalitis virus (TBEV), and non-enveloped RNA enteroviruses. Studied compounds were effective against DNA and RNA viruses reproduction in cell culture. 3-(2'-Deoxy-β-D-ribofuranosyl)-1,3-diaza-2-oxophenoxazine proved to be a potent inhibitor of VZV replication with superior activity against wild type than thymidine kinase deficient strains (EC50 0.06 and 10 μM, respectively). This compound did not show cytotoxicity on all the studied cell lines. Several compounds showed promising activity against TBEV (EC50 0.35-0.91 μM), but the activity was accompanied by pronounced cytotoxicity. These compounds may be considered as a good starting point for further structure optimization as antiherpesviral or antiflaviviral compounds.
Collapse
|
5
|
Fuchi Y, Fukuda T, Sasaki S. Luminescent europium sensors for specific detection of 8-oxo-dGTP by time-gated fluorescence. Bioorg Med Chem 2018; 26:3254-3260. [PMID: 29731311 DOI: 10.1016/j.bmc.2018.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
The 9-hydroxy-1,3-diazaphenoxazine-2-one unit was conjugated with the Eu3+-cyclen complex through a linker. This diazaphenoxazine group was expected as an antenna unit for the excitation of europium ion, and a selective recognition site for 8-oxo-dGTP base. Among the synthesized three derivatives, the highest fluorescence emission was obtained by the complex constructed of an ethylene linker and the cyclen unit with three N,N-dimethylacetamide groups. The Eu3+-cyclen complex exhibited a selective response to the 8-oxo-dGTP in aqueous media by a time-resolved fluorescence assay.
Collapse
Affiliation(s)
- Yasufumi Fuchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Fukuda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Fuchi Y, Fukuda T, Sasaki S. Synthetic receptor molecules for selective fluorescence detection of 8-oxo-dGTP in aqueous media. Org Biomol Chem 2018; 14:7949-55. [PMID: 27488938 DOI: 10.1039/c6ob01485b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 9-hydroxy-1,3-diazaphenoxazine-2-one derivatives were synthesized as fluorescent receptor molecules for 8-oxo-dGTP, which attach the cyclen-zinc complex at the 3-N position as the binding site for the triphosphate and the (2-aryloxycarbonylamino)ethyl group at the 9-O position as the hydrogen bonding site for 8-oxoguanine. Among these molecules, the receptor molecule 5a-Zn constructed of the ethyl linker at 3-N and the (2-benzyloxycarbonyl amino)ethyl group at 9-O displayed the best recognition ability for 8-oxoguanosine triphosphate (8-oxo-dGTP) in aqueous media. The receptor 5a-Zn was also shown to selectively detect 8-oxo-dGTP in a cell lysate solution.
Collapse
Affiliation(s)
- Yasufumi Fuchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takashi Fukuda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
7
|
Varizhuk AM, Zatsepin TS, Golovin AV, Belyaev ES, Kostyukevich YI, Dedkov VG, Shipulin GA, Shpakovski GV, Aralov AV. Synthesis of oligonucleotides containing novel G-clamp analogue with C8-tethered group in phenoxazine ring: Implication to qPCR detection of the low-copy Kemerovo virus dsRNA. Bioorg Med Chem 2017; 25:3597-3605. [PMID: 28396019 DOI: 10.1016/j.bmc.2017.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 01/20/2023]
Abstract
Nowadays modified oligonucleotides are widely used in diagnostics and as novel therapeutics. Introduction of modified or unnatural residues into oligonucleotides allows fine tuning of their binding properties to complementary nucleic acids and leads to improved stability both in vitro and in vivo. Previously it was demonstrated that insertion of phenoxazine nucleotides with various groups in C9-position into oligonucleotides leads to a significant increase of duplex stability with complementary DNA and RNA. Here the synthesis of a novel G-clamp nucleoside analogue (G8AE-clamp) bearing 2-aminoethyl tether at C8-atom is presented. Introduction of such modified residues into oligonucleotides lead to enhanced specificity of duplex formation towards complementary DNA and RNA targets with increased thermal and 3'-exonuclease stability. According to CD-spectroscopy studies G8AE-clamp does not substantially disrupt helix geometry. Primers containing G8AE-clamp demonstrated superior sensitivity in qPCR detection of dsRNA of Kemerovo virus in comparison to native oligonucleotides.
Collapse
Affiliation(s)
- Anna M Varizhuk
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Department of Structure-Functional Analysis of Biopolymers, Engelhardt Institute of Molecular Biology, Vavilov Str. 32, Moscow 119991, Russia
| | - Timofei S Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia; Central Research Institute of Epidemiology, Novogireevskaya 3a, Moscow 111123, Russia; Skolkovo Institute of Science and Technology, 3 Nobel Street, Skolkovo, Moscow Region 143026, Russia.
| | - Andrey V Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Evgeny S Belyaev
- Institute for Energy Problems of Chemical Physics of RAS, Leninskij pr. 38/2, Moscow 119334, Russia
| | - Yury I Kostyukevich
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Skolkovo, Moscow Region 143026, Russia
| | - Vladimir G Dedkov
- Central Research Institute of Epidemiology, Novogireevskaya 3a, Moscow 111123, Russia
| | - German A Shipulin
- Central Research Institute of Epidemiology, Novogireevskaya 3a, Moscow 111123, Russia
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow 117997, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow 117997, Russia.
| |
Collapse
|
8
|
Koga Y, Taniguchi Y, Kikukawa Y, Sasaki S. Recognition and detection of 8-oxo-rG in RNA using the DNA/OMeRNA chimera probes containing fluorescent adenosine-diazaphenoxazine analog. Bioorg Med Chem 2016; 24:1308-13. [PMID: 26872394 DOI: 10.1016/j.bmc.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Recent studies indicate that oxidative damage to RNA results in dysfunction of translation and eventual pathogenesis. A representative oxidized base in RNA is 8-hydroxyguanosine (8-oxo-rG), however, unlike its DNA counterpart (8-oxo-dG), its role in pathogenesis has not attracted much attention until recently. The 2'-deoxyadenosine derivative with a diazaphenoxazine skeleton at the 6-amino group (Adap) was shown to be selective for 8-oxo-dG in DNA. In this study, the 2'-O-methoxy derivative of Adap (2'-OMeAdap) was designed as a selective molecule for 8-oxo-rG in RNA. 8-Oxo-rG in the homopurine RNA was selectively recognized by the ODN probe incorporating Adap. In contrast, although it was not possible by the Adap-containing ODN prove due to the instability of the corresponding duplex, 8-oxo-rG in homopyrimidine RNA was selectively detected by the 2'-OMeRNA probe incorporating 2'-OMeAdap.
Collapse
Affiliation(s)
- Yohei Koga
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshiya Kikukawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
9
|
Taniguchi Y, Kikukawa Y, Sasaki S. Discrimination Between 8-Oxo-2′-Deoxyguanosine and 2′-Deoxyguanosine in DNA by the Single Nucleotide Primer Extension Reaction with Adap Triphosphate. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Taniguchi Y, Kikukawa Y, Sasaki S. Discrimination between 8-oxo-2'-deoxyguanosine and 2'-deoxyguanosine in DNA by the single nucleotide primer extension reaction with adap triphosphate. Angew Chem Int Ed Engl 2015; 54:5147-51. [PMID: 25727406 DOI: 10.1002/anie.201412086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/12/2015] [Indexed: 12/16/2022]
Abstract
The adenosine derivative of 2-oxo-1,3-diazaphenoxazine (Adap) exhibits a superb ability to recognize and form base pairs with 8-oxo-2'-deoxyguanosine (8-oxo-dG) in duplex DNA. In this study, the triphosphate of Adap (dAdapTP) was synthesized and tested for single nucleotide incorporation into primer strands using the Klenow Fragment. The efficiency of dAdapTP incorporation into 8-oxo-dG-containing templates was more than 36-fold higher than with dG-containing templates, and provides better discrimination than does the incorporation of natural 2'-deoxyadenosine triphosphate (dATP). The selective incorporation of dAdapTP into 8-oxo-dG templates was therefore applied to the detection of 8-oxo-dG in human telomeric DNA sequences extracted from H2 O2 -treated HeLa cells. The enzymatic incorporation of dAdapTP into 8-oxo-dG-containing templates may provide a novel basis for sequencing oxidative DNA damage in the genome.
Collapse
Affiliation(s)
- Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan).
| | | | | |
Collapse
|
11
|
Nakagawa O. [Development of artificial nucleic acids functionalized for damaged gene diagnosis, gene inhibition and delivery system]. YAKUGAKU ZASSHI 2014; 134:1319-29. [PMID: 25452241 DOI: 10.1248/yakushi.14-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial nucleic acids have recently been widely used with their properties optimized for various technologies such as the inhibition of gene expression (antisense/antigene strategies, RNA interference) and genetic diagnosis (single nucleotide polymorphism (SNP), damaged nucleobase). For practical application of nucleic acid therapeutics, establishment of an effective delivery system for oligonucleotides is also required because of their poor permeability into cells. Various useful delivery technologies including lipoplexes formed using cationic lipids and polyplexes made with cationic polymers have been developed; however, there is no crucial tool for oligonucleotide therapeutics at present. If technologies of functional nucleic acids and adequate delivery systems are cooperatively developed, the realization of nucleic acid therapeutics might be effectively accelerated. Based on this concept, we have been cooperatively developing these technologies based on organic synthetic chemistry during the past decade. This paper summarizes our recent results: 1) development of a specific fluorescent probe for 8-oxoguanine; 2) synthesis and evaluation of a prodrug-type small interfering RNA (siRNA) molecule; and 3) targeted intracellular delivery of oligonucleotides via conjugation with receptor-targeted ligands.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|