1
|
Othman SA, Abou-Ghadir OF, Menon V, Ramadan WS, Mostafa YA, El-Awady R, Abdu-Allah HHM. Combining lavendustin C and 5-arylidenethiazolin-4-one-based pharmacophores toward multitarget anticancer hybrids. Bioorg Chem 2024; 153:107884. [PMID: 39423773 DOI: 10.1016/j.bioorg.2024.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Lavendustin C, a natural-product derived anticancer lead compound, was modified at its carboxylic group by esterification or amidation (compounds 6-10) and at its amino group by introducing 5-arylidenethiazolin-4-ones (14a-c to 17a-c, 18a and 18b). Two strategies were used to combine these moieties and to optimize the yield. These new compounds were evaluated for their antiproliferative activities against a panel of nine cancer cell lines. The results clearly show that 5-arylidenethiazolin-4-one moiety contributes substantially to the activity. Also, methyl esters are more potent than amides, while N-ethylamides are the most potent among amides. 14b showed the highest potency against all tested cancer cell lines with IC50 1.4-2.5 µM, while against normal cell line IC50 > 50 µM. It showed arrest of HeLa cells at G0/G1, S phases and reduction of the percent of cells in G2/M. Moreover, 14b triggered death of HeLa cancer cells via apoptosis induction. EGFR inhibitory potency of 14b was found to be comparable to that of erlotinib. Computational docking and in silico pharmacokinetic studies were performed and discussed. In conclusion, 14b might serve as a multitarget lead compound for further development of anticancer agents.
Collapse
Affiliation(s)
- Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Varsha Menon
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Othman SA, Abou-Ghadir OF, Ramadan WS, Mostafa YA, El-Awady R, Abdu-Allah HHM. The design, synthesis, biological evaluation, and molecular docking of new 5-aminosalicylamide-4-thiazolinone hybrids as anticancer agents. Arch Pharm (Weinheim) 2023; 356:e2300315. [PMID: 37551741 DOI: 10.1002/ardp.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
New 5-aminosalicylamide-4-thiazolinone hybrids (27) were efficiently synthesized, characterized, and evaluated to explore their structure-activity relationship as anticancer agents. The antiproliferative activities of the new hybrids were evaluated against eight cancer cell lines using the sulforhodamine B assay. The most potent compound (24b) possessed high selectivity on the tested cell lines in the low micromolar range, with much lower effects on normal fibroblast cells (IC50 > 50 µM). The cell lines derived from leukemia (Jurkat), cervix (HeLa), and colon (HCT116) cancers appeared to be the most sensitive, with IC50 of 2 µM. 24b is the N-ethylamide derivative with p-dimethylaminobenzylidene at position 5 of the 4-thiazolinone moiety. Other N-substituents or arylidene derivatives showed lower activity. Hybrids with salicylamides showed lower activity than with methyl salicylate. The results clearly show that the modifications of the carboxy group and arylidene moiety greatly affect the activity. Investigating the possible molecular mechanisms of these hybrids revealed that they act through cell-cycle arrest and induction of apoptosis and epidermal growth factor receptor (EGFR) inhibition. Molecular docking studies rationalize the molecular interactions of 24b with EGFR. This work expands our knowledge of the structural requirements to improve the anticancer activity of 5-aminosalicylic-thiazolinone hybrids and pave the way toward multitarget anticancer salicylates.
Collapse
Affiliation(s)
- Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Sireesha R, Tej MB, Poojith N, Sreenivasulu R, Musuluri M, Subbarao M. Synthesis of Substituted Aryl Incorporated Oxazolo[4,5-b]Pyridine-Triazole Derivatives: Anticancer Evaluation and Molecular Docking Studies. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2021256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Reddymasu Sireesha
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Mandava Bhuvan Tej
- Department of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamilnadu, India
| | | | - Reddymasu Sreenivasulu
- Department of Chemistry, University College of Engineering (Autonomous), Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| | - Murali Musuluri
- Department of Chemistry, RVR & JC College of Engineering, Guntur, Andhra Pradesh, India
| | - Mannam Subbarao
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| |
Collapse
|
4
|
Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv 2020; 10:5610-5635. [PMID: 35497465 PMCID: PMC9049420 DOI: 10.1039/c9ra09510a] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The review lays emphasis on the significance of 1,2,3-triazoles synthesized via CuAAC reaction having potential to act as anti-microbial, anti-cancer, anti-viral, anti-inflammatory, anti-tuberculosis, anti-diabetic, and anti-Alzheimer drugs. The importance of click chemistry is due to its 'quicker' methodology that has the capability to create complex and efficient drugs with high yield and purity from simple and cheap starting materials. The activity of different triazolyl compounds was compiled considering MIC, IC50, and EC50 values against different species of microbes. In addition to this, the anti-oxidant property of triazolyl compounds have also been reviewed and discussed.
Collapse
Affiliation(s)
- Alisha Rani
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurjaspreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Akshpreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Ubair Maqbool
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 India
| | - Jandeep Singh
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| |
Collapse
|
5
|
Gómez-SanJuan A, Gamo AM, Delang L, Pérez-Sánchez A, Amrun SN, Abdelnabi R, Jacobs S, Priego EM, Camarasa MJ, Jochmans D, Leyssen P, Ng LFP, Querat G, Neyts J, Pérez-Pérez MJ. Inhibition of the Replication of Different Strains of Chikungunya Virus by 3-Aryl-[1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones. ACS Infect Dis 2018; 4:605-619. [PMID: 29406692 DOI: 10.1021/acsinfecdis.7b00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The re-emergence of chikungunya virus (CHIKV) is a serious global health threat. CHIKV is an alphavirus that is transmitted to humans by Aedes mosquitoes; therefore, their wide distribution significantly contributes to the globalization of the disease. Unfortunately, no effective antiviral drugs are available. We have identified a series of 3-aryl-[1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones as selective inhibitors of CHIKV replication. New series of compounds have now been synthesized with the aim to improve their physicochemical properties and to potentiate the inhibitory activity against different CHIKV strains. Among these newly synthesized compounds modified at position 3 of the aryl ring, tetrahydropyranyl and N- t-butylpiperidine carboxamide derivatives have shown to elicit potent antiviral activity against different clinically relevant CHIKV isolates with 50% effective concentration (EC50) values ranging from 0.30 to 4.5 μM in Vero cells, as well as anti-CHIKV activity in human skin fibroblasts (EC50 = 0.1 μM), a clinically relevant cell system for CHIKV infection.
Collapse
Affiliation(s)
- Asier Gómez-SanJuan
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ana-María Gamo
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Leen Delang
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | | | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 04-06 Immunos, Singapore 138648, Singapore
| | - Rana Abdelnabi
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Sofie Jacobs
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Eva-María Priego
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - María-José Camarasa
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Dirk Jochmans
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 04-06 Immunos, Singapore 138648, Singapore
| | - Gilles Querat
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ−IRD 190−Inserm 1207−EHESP−IHU Méditerranée Infection), 27 Bd Jean Moulin, 13005 Marseille, France
| | - Johan Neyts
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | | |
Collapse
|
6
|
Borisa AC, Bhatt HG. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies. Eur J Med Chem 2017; 140:1-19. [DOI: 10.1016/j.ejmech.2017.08.045] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/30/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
|
7
|
Abdu-Allah HH, Abdel-Moty SG, El-Awady R, El-Shorbagi ANA. Design and synthesis of novel 5-aminosalicylate (5-ASA)–4-thiazolinone hybrid derivatives with promising antiproliferative activity. Bioorg Med Chem Lett 2016; 26:1647-50. [DOI: 10.1016/j.bmcl.2016.02.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/29/2022]
|
8
|
Jeong Y, Lee J, Ryu JS. Design, synthesis, and evaluation of hinge-binder tethered 1,2,3-triazolylsalicylamide derivatives as Aurora kinase inhibitors. Bioorg Med Chem 2016; 24:2114-24. [PMID: 27041399 DOI: 10.1016/j.bmc.2016.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/16/2022]
Abstract
A series of hinge-binder tethered 1,2,3-triazolylsalicylamide derivatives were designed, synthesized, and evaluated for the Aurora kinase inhibitory activities. The novel hinge-binder tethered 1,2,3-triazolylsalicylamide scaffold was effectively assembled by Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC). A variety of alkynes with hinge binders were used to search proper structures-binding relationship to the hinge region. The synthesized 1,2,3-triazolylsalicylamide derivatives showed significant Aurora kinase inhibitory activity. In particular, 8a inhibited Aurora A kinase with an IC50 value of 0.284 μM, whereas 8m inhibited Aurora B kinase with an IC50 value of 0.364 μM.
Collapse
Affiliation(s)
- Yunkyung Jeong
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jooyeon Lee
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jae-Sang Ryu
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
9
|
Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov Today 2016; 21:118-132. [DOI: 10.1016/j.drudis.2015.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/17/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
|