1
|
Kawsar SMA, Munia NS, Saha S, Ozeki Y. In Silico Pharmacokinetics, Molecular Docking and Molecular Dynamics Simulation Studies of Nucleoside Analogs for Drug Discovery- A Mini Review. Mini Rev Med Chem 2024; 24:1070-1088. [PMID: 37957918 DOI: 10.2174/0113895575258033231024073521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 11/15/2023]
Abstract
Nucleoside analogs have been widely used as antiviral, antitumor, and antiparasitic agents due to their ability to inhibit nucleic acid synthesis. Adenosine, cytidine, guanosine, thymidine and uridine analogs such as didanosine, vidarabine, remdesivir, gemcitabine, lamivudine, acyclovir, abacavir, zidovusine, stavudine, and idoxuridine showed remarkable anticancer and antiviral activities. In our previously published articles, our main intention was to develop newer generation nucleoside analogs with acylation-induced modification of the hydroxyl group and showcase their biological potencies. In the process of developing nucleoside analogs, in silico studies play an important role and provide a scientific background for biological data. Molecular interactions between drugs and receptors followed by assessment of their stability in physiological environments, help to optimize the drug development process and minimize the burden of unwanted synthesis. Computational approaches, such as DFT, FMO, MEP, ADMET prediction, PASS prediction, POM analysis, molecular docking, and molecular dynamics simulation, are the most popular tools to culminate all preclinical study data and deliver a molecule with maximum bioactivity and minimum toxicity. Although clinical drug trials are crucial for providing dosage recommendations, they can only indirectly provide mechanistic information through researchers for pathological, physiological, and pharmacological determinants. As a result, in silico approaches are increasingly used in drug discovery and development to provide mechanistic information of clinical value. This article portrays the current status of these methods and highlights some remarkable contributions to the development of nucleoside analogs with optimized bioactivity.
Collapse
Affiliation(s)
- Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nasrin S Munia
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Supriyo Saha
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, 248007, Dehradun, Uttarakhand, 248007, India
| | - Yasuhiro Ozeki
- School of Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| |
Collapse
|
2
|
Salem M, Abdullah AH, Ibrahim NS, Zaki MEA, Elwahy AHM, Abdelhamid IA. Novel Scaffolds Based on Bis-thiazole Connected to Quinoxaline or Thienothiophene through 2-Phenoxy- N-arylacetamide Groups as New Hybrid Molecules: Synthesis, Antibacterial Activity, and Molecular Docking Investigations. ACS OMEGA 2023; 8:44312-44327. [PMID: 38027350 PMCID: PMC10666262 DOI: 10.1021/acsomega.3c07125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The resistance of microorganisms to antimicrobials has endangered the health of many people across the world. Overcoming the resistance problem will require the invention of molecules with a new mechanism of action so that no cross-resistance with existing therapies occurs. Because of their powerful antibacterial activity against a wide spectrum of Gram-positive and Gram-negative bacterial strains, heterocyclic compounds are appealing candidates for medicinal chemists. In this regard, as unique hybrid compounds, we synthesized a novel family of bis-thiazoles linked to quinoxaline or thienothiophene via the 2-phenoxy-N-arylacetamide moiety. The target compounds were synthesized by reacting the relevant bis(α-haloketones) with the corresponding thiosemicarbazones in EtOH at reflux with a few drops of TEA. Under comparable reaction conditions, the isomeric bis(thiazoles) were synthesized by reacting the appropriate bis(thiosemicarbazone) with the respective α-haloketones. The structures of the novel compounds were confirmed using elements and spectral data. All of the synthesized compounds were tested for antibacterial activity in vitro. With an inhibitory zone width of 12 mm, compound 12a had the same activity as the reference medication tobramycin against Staphylococcus aureus. Compound 12b showed 20 mg/mL as a minimum inhibitory concentration (MIC) against Bacillus subtilis. Some of the synthesized compounds were tested via molecular docking against two bacterial proteins (dihydrofolate reductase and tyrosyl-tRNA synthetase).
Collapse
Affiliation(s)
- Mostafa
E. Salem
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Abbas H. Abdullah
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Nada S. Ibrahim
- Department
of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E. A. Zaki
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Ahmed H. M. Elwahy
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Ismail A. Abdelhamid
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
3
|
Kayes MR, Saha S, Alanazi MM, Ozeki Y, Pal D, Hadda TB, Legssyer A, Kawsar SM. Macromolecules: Synthesis, antimicrobial, POM analysis and computational approaches of some glucoside derivatives bearing acyl moieties. Saudi Pharm J 2023; 31:101804. [PMID: 37868643 PMCID: PMC10585311 DOI: 10.1016/j.jsps.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Macromolecules i.e., carbohydrate derivatives are crucial to biochemical and medical research. Herein, we designed and synthesized eight methyl α-D-glucopyranoside (MGP) derivatives (2-8) in good yields following the regioselective direct acylation method. The structural configurations of the synthesized MGP derivatives were analyzed and verified using multiple physicochemical and spectroscopic techniques. Antimicrobial experiments revealed that almost all derivatives demonstrated noticeable antifungal and antibacterial efficacy. The synthesized derivatives showed minimum inhibitory concentration (MIC) values ranging from 0.75 µg/mL to 1.50 µg/mL and minimum bactericidal concentrations (MBCs) ranging from 8.00 µg/mL to 16.00 µg/mL. Compound 6 inhibited Ehrlich ascites carcinoma (EAC) cell proliferation by 10.36% with an IC50 of 2602.23 μg/mL in the MTT colorimetric assay. The obtained results were further rationalized by docking analysis of the synthesized derivatives against 4URO and 4XE3 receptors to explore the binding affinities and nonbonding interactions of MGP derivatives with target proteins. Compound 6 demonstrated the potential to bind with the target with the highest binding energy. In a stimulating environment, a molecular dynamics study showed that MGP derivatives have a stable conformation and binding pattern. The MGP derivatives were examined using POM (Petra/Osiris/Molinspiration) bioinformatics, and as a result, these derivatives showed good toxicity, bioavailability, and pharmacokinetics. Various antifungal/antiviral pharmacophore (Oδ-, O'δ-) sites were identified by using POM investigations, and compound 6 was further tested against other pathogenic fungi and viruses, such as Micron and Delta mutants of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad R. Kayes
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Supriyo Saha
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yasuhiro Ozeki
- School of Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), C.G, 495009 Bilaspur, India
| | - Taibi B. Hadda
- BBEH and LACE Laboratories of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| | - Abdelkhaleq Legssyer
- BBEH and LACE Laboratories of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| | - Sarkar M.A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
4
|
Hosen MA, Qais FA, Chtita S, Rahman IA, Almehdi AM, Ali F, Almalki FA, Hadda TB, Laaroussi H, Kawsar SMA. In silico and POM analysis for potential antimicrobial agents of thymidine analogs by using molecular docking, molecular dynamics and ADMET profiling. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:877-918. [PMID: 37235455 DOI: 10.1080/15257770.2023.2215839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Nucleoside analogs are an important, well-established class of clinically useful medicinal agents that exhibit potent antimicrobial activity. Thus, we designed to explore the synthesis and spectral characterization of 5'-O-(myristoyl)thymidine esters (2-6) for in vitro antimicrobial, molecular docking, molecular dynamics, SAR, and POM analyses. An unimolar myristoylation of thymidine under controlled conditions furnished the 5'-O-(myristoyl)thymidine and it was further converted into four 3'-O-(acyl)-5'-O-(myristoyl)thymidine analogs. The chemical structures of the synthesized analogs were ascertained by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests along with PASS, prediction indicated expectant antibacterial functionality of these thymidine esters compared to the antifungal activities. In support of this observation, their molecular docking studies have been performed against lanosterol 14α-demethylase (CYP51A1) and Aspergillus flavus (1R51) and significant binding affinities and non-bonding interactions were observed. The stability of the protein-ligand complexes was monitored by a 100 ns MD simulation and found the stable conformation and binding mode in a stimulating environment of thymidine esters. Pharmacokinetic predictions were studied to assess their ADMET properties and showed promising results in silico. SAR investigation indicated that acyl chains, lauroyl (C-12) and myristoyl (C-14), combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. The POM analyses provide the structural features responsible for their combined antibacterial/antifungal activity and provide guidelines for further modifications, with the aim of improving each activity and selectivity of designed drugs targeting potentially drug-resistant microorganisms. It also opens avenues for the development of newer antimicrobial agents targeting bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Mohammed A Hosen
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Faizan A Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ibrahim A Rahman
- Department of Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed M Almehdi
- Department of Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Taibi B Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
5
|
Akkoc S, Karatas H, Muhammed MT, Kökbudak Z, Ceylan A, Almalki F, Laaroussi H, Ben Hadda T. Drug design of new therapeutic agents: molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J Biomol Struct Dyn 2022:1-14. [DOI: 10.1080/07391102.2022.2111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| | - Halis Karatas
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
| | - Zülbiye Kökbudak
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Ahmet Ceylan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| |
Collapse
|
6
|
Bechlem K, Berredjem M, Djouad SE, Sothea TO, Bouacida S, Marminon C, Hadda TB, Lebreton J, Bouzina A. Novel N-acylsulfamoyl-oxazolidin-2ones: Synthesis, antitumor activity, X-ray crystallographic study, molecular docking and POM analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Anowar Hosen M, Sultana Munia N, Al-Ghorbani M, Baashen M, Almalki FA, Ben Hadda T, Ali F, Mahmud S, Abu Saleh M, Laaroussi H, Kawsar SMA. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorg Chem 2022; 125:105850. [PMID: 35533581 PMCID: PMC9065685 DOI: 10.1016/j.bioorg.2022.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022]
Abstract
Nucleoside precursors and nucleoside analogs occupy an important place in the treatment of viral respiratory pathologies, especially during the current COVID-19 pandemic. From this perspective, the present study has been designed to explore and evaluate the synthesis and spectral characterisation of 5́-O-(lauroyl) thymidine analogs 2-6 with different aliphatic and aromatic groups through comprehensive in vitro antimicrobial screening, cytotoxicity assessment, physicochemical aspects, molecular docking and molecular dynamics analysis, along with pharmacokinetic prediction. A unimolar one-step lauroylation of thymidine under controlled conditions furnished the 5́-O-(lauroyl) thymidine and indicated the selectivity at C-5́ position and the development of thymidine based potential antimicrobial analogs, which were further converted into four newer 3́-O-(acyl)-5́-O-(lauroyl) thymidine analogs in reasonably good yields. The chemical structures of the newly synthesised analogs were ascertained by analysing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests against five bacteria and two fungi, along with the prediction of activity spectra for substances (PASS), indicated promising antibacterial functionality for these thymidine analogs compared to antifungal activity. In support of this observation, molecular docking experiments have been performed against the main protease of SARS-CoV-2, and significant binding affinities and non-bonding interactions were observed against the main protease (6LU7, 6Y84 and 7BQY), considering hydroxychloroquine (HCQ) as standard. Moreover, the 100 ns molecular dynamics simulation process was performed to monitor the behaviour of the complex structure formed by the main protease under in silico physiological conditions to examine its stability over time, and this revealed a stable conformation and binding pattern in a stimulating environment of thymidine analogs. Cytotoxicity determination confirmed that compounds were found less toxic. Pharmacokinetic predictions were investigated to evaluate their absorption, distribution, metabolism and toxic properties, and the combination of pharmacokinetic and drug-likeness predictions has shown promising results in silico. The POM analysis shows the presence of an antiviral (O1δ-, O2δ-) pharmacophore site. Overall, the current study should be of great help in the development of thymidine-based, novel, multiple drug-resistant antimicrobial and COVID-19 drugs.
Collapse
Affiliation(s)
- Mohammed Anowar Hosen
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Nasrin Sultana Munia
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
| | - Mohammed Baashen
- Department of Chemistry, Science and Humanities College, Shaqra University, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, V, Bangladesh
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh.
| |
Collapse
|
8
|
Munia NS, Hosen MA, Azzam KMA, Al-Ghorbani M, Baashen M, Hossain MK, Ali F, Mahmud S, Shimu MSS, Almalki FA, Hadda TB, Laaroussi H, Naimi S, Kawsar SMA. Synthesis, antimicrobial, SAR, PASS, molecular docking, molecular dynamics and pharmacokinetics studies of 5'- O-uridine derivatives bearing acyl moieties: POM study and identification of the pharmacophore sites. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1036-1083. [PMID: 35797068 DOI: 10.1080/15257770.2022.2096898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Because of their superior antibacterial and pharmacokinetic capabilities, many nucleoside-based esters show potential against microorganisms, and may be used as pharmacological agents to address multidrug-resistant pathogenic problems. In this study, several aliphatic and aromatic groups were inserted to synthesize various 5'-O-decanoyluridine (2-5) and 5'-O-lauroyluridine derivatives (6-7) for antimicrobial, in silico computational, pharmacokinetic and POM (Petra/Osiris/Molinspiration). The chemical structures of the synthesized uridine derivatives were confirmed by physicochemical, elemental, and spectroscopic analyses. In vitro antimicrobial screening against five bacteria and two fungi, as well as the prediction of substance activity spectra (PASS), revealed that these uridine derivatives have promising antifungal properties when compared to the antibacterial activities. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties. Molecular docking was conducted against lanosterol 14a-demethylase CYP51A1 (3JUV) and Aspergillus flavus (1R4U) and revealed binding affinities and non-covalent interactions with the target. Then, a 150 ns molecular dynamic simulation was performed to confirm the behavior of the complex structure formed by microbial protein under in silico physiological conditions to examine its stability over time, which revealed a stable conformation and binding pattern in a stimulating environment of uridine derivatives. The acyl chain {CH3(CH2)9CO-} and {CH3(CH2)10CO-} in conjunction with sugar, was determined to have the most potent activity against bacterial and fungal pathogens in a structure-activity relationships (SAR) investigation. POM analyses were conducted with the presence of an antifungal (O δ- -- O' δ-) pharmacophore site. Overall, the present study might be useful for the development of uridine-based novel multidrug-resistant antimicrobial.
Collapse
Affiliation(s)
- Nasrin S Munia
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohammed A Hosen
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Khaldun M A Azzam
- Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
| | - Mohammed Baashen
- Department of Chemistry, Science and Humanities College, Shaqra University, Shaqra, KSA
| | - Mohammed K Hossain
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Mst S S Shimu
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Taibi B Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Souad Naimi
- Department of Biological Sciences, Sanofi-Aventis, Vitry, France
| | - Sarkar M A Kawsar
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
9
|
Johnson J, Justin Dhanaraj C. Studies on some biologically active Metal(II) chelates: Spectral, thermal, biological and molecular modelling approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Chalkha M, Nakkabi A, Hadda TB, Berredjem M, Moussaoui AE, Bakhouch M, Saadi M, Ammari LE, Almalki FA, Laaroussi H, Jevtovic V, Yazidi ME. Crystallographic study, biological assessment and POM/Docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined Antibacterial/Antiviral pharmacophore sites leading to in-silico screening the anti-Covid-19 activity. J Mol Struct 2022; 1267:133605. [PMID: 35782312 PMCID: PMC9237569 DOI: 10.1016/j.molstruc.2022.133605] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/14/2023]
Abstract
The discovery and development of new potent antimicrobial and antioxidant agents is an essential lever to protect living beings against pathogenic microorganisms and free radicals. In this regard, new functionalized pyrazoles have been synthesized using a simple and accessible approach. The synthesized aminobenzoylpyrazoles 3a-h and pyrazole-sulfonamides 4a-g were obtained in good yields and were evaluated in vitro for their antimicrobial and antioxidant activities. The structures of the synthesized compounds were determined using IR, NMR, and mass spectrometry. The structure of the compound 4b was further confirmed by single crystal X-ray diffraction. The results of the in vitro screening show that the synthesized pyrazoles 3 and 4 exhibit a promising antimicrobial and antioxidant activities. Among the tested compounds, pyrazoles 3a, 3f, 4e, 4f, and 4g have exhibited remarkable antimicrobial activity against some microorganisms. In addition, compounds 3a, 3c, 3e, 4a, 4d, 4f, and 4g have shown a significant antioxidant activity in comparison with the standard butylhydroxytoluene (BHT). Hence, compounds 3a, 4f, and 4g represent interesting dual acting antimicrobial and antioxidant agents. In fact, pyrazole derivatives bearing sulfonamide moiety (4a-g) have displayed an important antimicrobial activity compared to pyrazoles 3a-h, this finding could be attributed to the synergistic effect of the pyrazole and sulfonamide pharmacophores. Furthermore, Molecular docking results revealed a good interaction of the synthesized compounds with the target proteins and provided important information about their interaction modes with the target enzyme. The results of the POM bioinformatics investigations (Petra, Osiris, Molinspiration) show that the studied heterocycles present a very good non toxicity profile, an excellent bioavailability, and pharmacokinetics. Finally, an antiviral pharmacophore (O δ−, O δ−) was evaluated in the POM investigations and deserves all our attention to be tested against Covid-19 and its Omicron and Delta mutants.
Collapse
Affiliation(s)
- Mohammed Chalkha
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
- Laboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, Faculté des Sciences, Université Moulay Ismail, BP 11201, Meknes 50000, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Malika Berredjem
- Laboratoire de chimie organique appliquée (LCOA), Groupe de Synthèse de biomolécules et modélisation moléculaire, Université Badji-Mokhtar Annaba, BP 12, Annaba 23000, Algérie
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), Fez 30050, Morocco
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida 24000, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Science, Mohammed V University, Avenue Ibn Battouta, BP. 1014, 100090 Rabat, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Science, Mohammed V University, Avenue Ibn Battouta, BP. 1014, 100090 Rabat, Morocco
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Hail 81451, Saudi Arabia
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
| |
Collapse
|
11
|
Esharkawy ER, Almalki F, Hadda TB. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem 2022; 120:105587. [PMID: 35026560 PMCID: PMC8719923 DOI: 10.1016/j.bioorg.2021.105587] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.
Collapse
Affiliation(s)
- Eman R Esharkawy
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| |
Collapse
|
12
|
Antitumor activity, X-Ray crystallography, in silico study of some-sulfamido-phosphonates. Identification of pharmacophore sites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Ben Hadda T, Berredjem M, Almalki FA, Rastija V, Jamalis J, Emran TB, Abu-Izneid T, Esharkawy E, Rodriguez LC, Alqahtani AM. How to face COVID-19: proposed treatments based on remdesivir and hydroxychloroquine in the presence of zinc sulfate. Docking/DFT/POM structural analysis. J Biomol Struct Dyn 2021; 40:9429-9442. [PMID: 34033727 PMCID: PMC8171014 DOI: 10.1080/07391102.2021.1930161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Laboratory of Applied Chemistry & Environment, Faculty of Science, University Mohammed the first, Oujda, Morocco,CONTACT Taibi Ben Hadda Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Almukkarramah 21955, Saudi Arabia; Malika Berredjem Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000, Annaba, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria,CONTACT Taibi Ben Hadda Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Almukkarramah 21955, Saudi Arabia; Malika Berredjem Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000, Annaba, Algeria
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh,Drug Discovery, GUSTO A Research Group, Chittagong, Bangladesh
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, UAE
| | - Eman Esharkawy
- Department of Plant Ecology and Range Management, Ecology and Dry Lands Agriculture Division, Desert Research Center, Mathef El-Mataria, Egypt,Department of Chemistry, Science Faculty for Girls, Northern Border University ARAR, North Region, Saudi Arabia
| | - Luis Cruz Rodriguez
- ELIDAN Dynamic LLC, Tampa, FL, USA,ELIDAN Genome SAS, Montereau Fault Yonne, France,Environmental Biotechnology Department, ExCELab Co, Ltd, St Ann, Jamaica
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano[2,3-d]pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites. Bioorg Chem 2020; 106:104480. [PMID: 33279245 DOI: 10.1016/j.bioorg.2020.104480] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/27/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
New annulated pyrano[2,3-d]pyrimidine derivatives were synthesized with hydroxyl, methoxy, bromine, nitrile and nitro substituents on its skeleton. The correlated electronic effect of substituents on the magnitude of antibacterial activity was noted. The electron donating substituents (namely; 4-OH, 4-OCH3, 4-Br) and electron withdrawing substituents (4-NO2) on phenyl ring in the pyrano[2,3-d]pyrimidine skeleton exerted different influence on its antimicrobial activity against some Gram-positive and Gram-negative bacteria such as Pseudomonas aureus, E. coli, Staphylococcus aureus, Klebsiella pneumonia and Bacillus cereus. All the pyrano[2,3-d]pyrimidines were characterized by spectroscopic analyses. Antibacterial screening revealed that the presence of heteroaryl, cyano and amino groups on pyrano[2,3-d]pyrimidine skeleton increases its penetrating power on the bacterial cell wall so that the product becomes more biologically active. So the the nature of electron withdrawing or electro-donnor Impact of substituents should be taken in consideration in drug design. Hydrolysis of -CRN to amide restored vital Intramolecular interaction like ortho-nitrophenyl and ONOδ-…NHδ+/amide link, offering a crucial template for antibacterial NH, HO-pharmacophore sites, which ultimately elevated innate antimicrobial profiles. POM combinatorial analysis of tangible electronic contributions due to armed annulated pyrano[2,3-d]pyrimidines concluded their broad antimicrobial activity and viable/prominent drug score index through perspective parameters particularly: inter atomic distance/linkers, steric, electronic, polar parameters, and with a different polarising effect of electron donating/withdrawing environments of substituents. Furthermore, an anti-Kinase pharmacophore site (OCNHCO) was evaluated in continuation of the POM investigations. All synthesized products verified fewer side effects than standard streptomycin, but facile implication in selective cancer media (viz. breast or leucemia still needs to be screened).
Collapse
|
15
|
Singh A, Singh G, Bedi PMS. Thiophene derivatives: A potent multitargeted pharmacological scaffold. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical SciencesGuru Nanak Dev University Amritsar Punjab India
| | - Gurvinder Singh
- Department of Pharmaceutical ChemistryKhalsa College of Pharmacy Amritsar Punjab India
| | | |
Collapse
|
16
|
Iraji A, Nouri A, Edraki N, Pirhadi S, Khoshneviszadeh M, Khoshneviszadeh M. One-pot synthesis of thioxo-tetrahydropyrimidine derivatives as potent β-glucuronidase inhibitor, biological evaluation, molecular docking and molecular dynamics studies. Bioorg Med Chem 2020; 28:115359. [PMID: 32098709 DOI: 10.1016/j.bmc.2020.115359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023]
Abstract
A series of N,N-diethyl phenyl thioxo-tetrahydropyrimidine carboxamide have been synthesized and investigated for their β-glucuronidase inhibitory activities. All molecules exhibited excellent inhibition with IC50 values ranging from 0.35 to 42.05 µM and found to be even more potent than the standard d-saccharic acid. Structure-activity relationship analysis indicated that the meta-aryl-substituted derivatives significantly influenced β-glucuronidase inhibitory activities while the para-substitution counterpart outperforming moderate potency. The most potent compound in this series was 4g bearing thiophene motif with IC50 of 0.35 ± 0.09 µM. To verify the SAR, molecular docking and molecular dynamics studies were also performed.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nouri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
From Xanthine Oxidase Inhibition to In Vivo Hypouricemic Effect: An Integrated Overview of In Vitro and In Vivo Studies with Focus on Natural Molecules and Analogues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9531725. [PMID: 32184901 PMCID: PMC7060854 DOI: 10.1155/2020/9531725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) levels on blood, which can lead to gout, a common pathology. These high UA levels are associated with increased purine ingestion and metabolization and/or its decreased excretion. In this field, xanthine oxidase (XO), by converting hypoxanthine and xanthine to UA, plays an important role in hyperuricemia control. Based on limitations and adverse effects associated with the use of allopurinol and febuxostat, the most known approved drugs with XO inhibitory effect, the search for new molecules with XO activity is growing. However, despite the high number of studies, it was found that the majority of tested products with relevant XO inhibition were left out, and no further pharmacological evaluation was performed. Thus, in the present review, available information published in the past six years concerning isolated molecules with in vitro XO inhibition complemented with cytotoxicity evaluation as well as other relevant studies, including in vivo hypouricemic effect, and pharmacokinetic/pharmacodynamic profile was compiled. Interestingly, the analysis of data collected demonstrated that molecules from natural sources or their mimetics and semisynthetic derivatives constitute the majority of compounds being explored at the moment by means of in vitro and in vivo animal studies. Therefore, several of these molecules can be useful as lead compounds and some of them can even have the potential to be considered in the future clinical candidates for the treatment of hyperuricemia.
Collapse
|
18
|
Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem 2020; 187:111921. [PMID: 31835168 PMCID: PMC7111419 DOI: 10.1016/j.ejmech.2019.111921] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, β-glucuronidase (βGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of β-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of βGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of βGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved βGLU inhibitory potency and the development of new therapeutic agents in consequential.
Collapse
Affiliation(s)
- Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ebenezer Oluwakemi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
19
|
Jamalis J, Yusof FSM, Chander S, Wahab RA, Bhagwat DP, Sankaranarayanan M, Almalki F, Ben Hadda T. Psoralen Derivatives: Recent Advances of Synthetic Strategy and Pharmacological Properties. Antiinflamm Antiallergy Agents Med Chem 2020; 19:222-239. [PMID: 31241020 PMCID: PMC7499361 DOI: 10.2174/1871523018666190625170802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Psoralen or furocoumarin is a linear three ring heterocyclic compound. Psoralens are planar, tricyclic compounds, consisting of a furan ring fused to a coumarin moiety. Psoralen has been known for a wide spectrum of biological activities, spanning from cytotoxic, photosensitizing, insecticidal, antibacterial to antifungal effect. Thus, several structural changes were introduced to explore the role of specific positions with respect to the biological activity. Convenient approaches utilized for the synthesis of psoralen skeleton can be categorized into two parts: (i) the preparation of the tricyclic ring system from resorcinol, (ii) the exocyclic modification of the intact ring system. Furthermore, although psoralens have been used in diverse ways, we mainly focus in this work on their clinical utility for the treatment of psioraisis, vitiligo and skin-related disorder.
Collapse
Affiliation(s)
- Joazaizulfazli Jamalis
- Address correspondence to these authors at the Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia; Tel: +0133176356; E-mails: (JJ); (TBH)
| | | | | | | | | | | | | | - Taibi Ben Hadda
- Address correspondence to these authors at the Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia; Tel: +0133176356; E-mails: (JJ); (TBH)
| |
Collapse
|
20
|
Justin Dhanaraj C, Johnson J. DNA interaction, antioxidant and in vitro cytotoxic activities of some mononuclear metal(II) complexes of a bishydrazone ligand. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1006-1015. [DOI: 10.1016/j.msec.2017.04.152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/02/2017] [Accepted: 04/27/2017] [Indexed: 02/03/2023]
|
21
|
Hakkou Z, Maciuk A, Leblais V, Bouanani NE, Mekhfi H, Bnouham M, Aziz M, Ziyyat A, Rauf A, Hadda TB, Shaheen U, Patel S, Fischmeister R, Legssyer A. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed Pharmacother 2017. [PMID: 28623784 DOI: 10.1016/j.biopha.2017.06.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Inula viscosa L. (Asteraceae) is a medicinal plant widely used as a folk medicine in oriental Morocco, to treat hypertension. The antihypertensive effect of the methanolic extract obtained from I. viscosa leaves was evaluated in hypertensive L-NAME rats. Systolic blood pressure (SBP) was measured using a non-invasive indirect tail-cuff plethysmographic method. Four groups of rats were used: a control group; a hypertensive group treated with L-NAME (32mg/kg/day); a positive control group treated with L-NAME plus enalapril (15mg/kg/day) as a reference antihypertensive agent; and a group treated with L-NAME plus MeOH-extract (40mg/kg/day). METHODS Treatment with L-NAME alone caused a progressive increase in SBP. After 4 weeks, the value of SBP reached 160±2mmHg which shows the installation of hypertension. Enalapril prevented the increase in SBP, which remained normal at 123±1mmHg after 4 weeks of treatment. The administration of MeOH-extract along with L-NAME prevented the increase in SBP as well, which remained constant at 115±1mmHg after 4 weeks of treatment. In ex-vivo models, MeOH-extract produced a relaxation of pre-contracted ring aorta (54 ± 2% of relaxation at 3g/L). But, when the rings were denuded, MeOH-extract failed to relax pre-contracted rings of aorta. Phytochemical study of I. viscosa MeOH-extract revealed the presence of phenolic compounds, such as cynarin and chlorogenic acid. RESULTS The present results suggest that I. viscosa MeOH-extract has an antihypertensive, predominantly mediated by an endothelium-dependent vasodilatory effect. Cynarin and chlorogenic acid, which have a strong vasorelaxant effect may be involved in the antihypertensive effect of the plant extract. The bioinformatic POM analysis confirms the therapeutic potential of cynarin and chlorogenic acids as inhibitors of various biotargets. Based on the results, the coordination of these phytochemicals with calcium and transition metals should be studied, for better scope at antihypertensive drug development.
Collapse
Affiliation(s)
- Zineb Hakkou
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Alexandre Maciuk
- Laboratoire de Pharmacognosie UPRES-A 8076 CNRS, BIOCIS, Faculté de Pharmacie Université Paris Sud XI Chatenay Malabry, France
| | - Veronique Leblais
- Laboratoire de Signalisation et Physiopathologie Cardiaque INSERM UMR-S 769, Faculté de Pharmacie Université Paris Sud XI Chatenay Malabry, France
| | - Nour Elhouda Bouanani
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Bnouham
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Aziz
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abderrahime Ziyyat
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Taibi Ben Hadda
- Laboratoire de Chimie des Matériaux, Faculté des Sciences , Département de Chimie, Université Mohammed Premier , Oujda 60000, Morocco
| | - Usama Shaheen
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah-21955, Saudi Arabia
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA
| | - Rodolphe Fischmeister
- Laboratoire de Signalisation et Physiopathologie Cardiaque INSERM UMR-S 769, Faculté de Pharmacie Université Paris Sud XI Chatenay Malabry, France
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
22
|
Altamimi R, Ghabbour HA, Aldawsari F, AlRuqi OS, Alqahtani N. Crystal structure of 1,1′-(3,4-diphenylthieno[2,3- b]thiophene-2,5-diyl)bis[1-phenyl-methanone], C 32H 20O 2S 2. Z KRIST-NEW CRYST ST 2017. [DOI: 10.1515/ncrs-2016-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C32H20O2S2, monoclinic, P21/c (no. 14), a = 10.2763(8) Å, b = 19.9178(15) Å, c = 11.8597(10) Å, β = 92.828(3)°, V = 2424.3(3) Å3, Z = 4, R
gt(F) = 0.069, wR(F
2) = 0.1782, T = 293(2).
Collapse
Affiliation(s)
- Rashid Altamimi
- National Center for Petrochemical Technology (NCPT) at King Abdulaziz City for Science and Technology (KACST) 11442, Saudi Arabia
| | - Hazem A. Ghabbour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Fahad Aldawsari
- National Center for Petrochemical Technology (NCPT) at King Abdulaziz City for Science and Technology (KACST) 11442, Saudi Arabia
| | - Obaid S. AlRuqi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser Alqahtani
- National Center for Petrochemical Technology (NCPT) at King Abdulaziz City for Science and Technology (KACST) 11442, Saudi Arabia
| |
Collapse
|
23
|
Mabkhot YN, Barakat A, Soliman SM, El-Idreesy TT, Ghabbour HA, Al-Showiman SS. Synthesis, characterization and computational studies of a novel thieno[2,3-b]thiophene derivative. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Al-Maqtari HM, Jamalis J, Hadda TB, Sankaranarayanan M, Chander S, Ahmad NA, Mohd Sirat H, Althagafi II, Mabkhot YN. Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylated pyrazole. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2737-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Mabkhot YN, Barakat A, Al-Showiman SS, Frey W, Uzzaman S, Ghabbour HA. Crystal structure of diethyl-3-methyl-4-phenylthieno[2,3- b]thiophene-2,5-dicarboxylate, C 19H 18O 4S 2. Z KRIST-NEW CRYST ST 2016. [DOI: 10.1515/ncrs-2015-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H17.75O4.13S2, monoclinic, P21/n (no. 14), a = 7.1921(6) Å, b = 18.6304(14) Å, c = 13.3739(11) Å, β = 92.681(4)°, V = 1790.0(2) Å3, Z = 4, R
gt
(F) = 0.0478, wR
ref
(F
2
) = 0.0913, T = 100 K.
Collapse
Affiliation(s)
- Yahia N. Mabkhot
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Salim S. Al-Showiman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Wolfgang Frey
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Shams Uzzaman
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
| | | |
Collapse
|
26
|
Synthesis, in-vitro antibacterial, antifungal, and molecular modeling of potent anti-microbial agents with a combined pyrazole and thiophene pharmacophore. Molecules 2015; 20:8712-29. [PMID: 26007175 PMCID: PMC6272790 DOI: 10.3390/molecules20058712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022] Open
Abstract
Ethyl 5-acetyl-4-methyl-2-(phenylamino)thiophene-3-carboxylate (2) and there derivatives 3a–c, 4, 6a–c and 9a–f were synthesized. The structure of compound 2 was deduced by 1H-NMR, 13C-NMR, FT-IR, MS, microanalysis, and single-crystal X-ray crystallography. The compound crystallized in the monoclinic system, with space group P21/c and cell coordinates a = 8.5752(16) Å, b = 21.046(4) Å, c = 8.2941(12) Å, β = 101.131(6)°, V = 1468.7(4) Å3, and Z = 4. Compounds 2, 3a–c, 4, 5a–c and 9a–f were subjected into in vitro antimicrobial activity tests. Compounds 3a and 3c were more potent than standard drug amphotericin B, showing MIC values of 23.8 ± 0.42 and 24.3 ± 0.68, respectively, against Aspergillus fumigatus while the standard drug MIC was 23.7 ± 0.1. Compound 3c was also more potent (MIC 24.8 ± 0.64) than the standard drug amphotericin B (MIC 19.7 ± 0.2) against Syncephalastrum racemosum. Compounds 4 and 9f also showed promising anti-microbial activity. Molecular modeling was performed for the most active compounds.
Collapse
|
27
|
Mabkhot YN, Aldawsari FD, Al-Showiman SS, Barakat A, Soliman SM, Choudhary MI, Yousuf S, Mubarak MS, Hadda TB. Novel enaminone derived from thieno [2,3-b] thiene: Synthesis, x-ray crystal structure, HOMO, LUMO, NBO analyses and biological activity. Chem Cent J 2015; 9:24. [PMID: 26064187 PMCID: PMC4461800 DOI: 10.1186/s13065-015-0100-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to their structural and therapeutic diversity, thienothiophene derivatives have attracted much synthetic interest because of their reactivity and biological activity. The thieno [2,3-b] thiophene moiety has been used in the design of a novel pharmaceutical therapies. Additionally, its enaminones derivatives are versatile synthons and have a lot of synthetic applications such as N-heterocycles, wide variety of naturally occurring alkaloids and pharmaceutical drugs. RESULTS Synthesis of (2E,2'E)-1,1'-(3,4-diphenylthieno [2,3-b] thiophene-2,5-diyl) bis (3-(dimethylamino) prop-2-en-1-one) 5 was reported. The structure of compound 5 was deduced by spectroscopic techniques. The compound was crystallizes in the monoclinic system with space group P-1 with cell coordinates a=9.9685 (8) Å, b=10.1382 (8) Å, c=13.3220 (11) Å, α=101.018 (2) °, β=94.480 (2) °, γ=107.207 (1) °, V=1249.3 (1) Å3, and Z=2. In the crystal molecules are packed in chains formed via weak intermolecular C21-H21A… O1, C22-H22A…O2 and C27-H27A…O2 hydrogen bondings. Theoretical quantum chemical calculations have been performed on the studied compound using the DFT B3LYP/6-311G (d, p) method. The geometric parameters of the optimized structure are in good agreement with the experimental data obtained from our reported X-ray structure. The two benzene rings and the two side chains are not coplanar with the fused thiophene rings. The electronic spectra of the studied compound have been calculated using the TD-DFT method at the same level of theory. The transition bands at 352.9 nm (f=0.5549) and 332.1 nm (f=0.2190) are due to the H-1 → L (72%) and H → L + 1 (82%) excitations respectively. The NBO calculations were performed to predict the natural atomic charges at the different atomic sites and to study the different intramolecular charge transfer (ICT) interactions occurring in the studied system. It is found that the O and N-atoms have the highest negative charge densities while the S-atoms are the most electropositive. These results give idea about how our molecule could react with the receptor active sites. Compound 5 was evaluated against ant-microbial activity. CONCLUSIONS Synthesis, molecular structure and spectroscopic invesitgation of (2E,2'E)-1,1'-(3,4-diphenylthieno [2,3-b] thiophene-2,5-diyl) bis (3- (dimethylamino) prop-2-en-1-one) 5 was studied. Graphical AbstractMolecular structure investigation of novel enaminone derived from thieno [2,3-b] thiene.
Collapse
Affiliation(s)
- Yahia Nasser Mabkhot
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Fahad D Aldawsari
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia ; King Abdulaziz City for Science and Technology, P. O. Box 6086, Riyadh, 11442 Saudi Arabia
| | - Salem S Al-Showiman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia ; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, Ibrahimia 21321 Egypt
| | - Saied M Soliman
- Department of Chemistry, Rabigh College of Science and Art, King Abdulaziz University, P O Box 344, Rabigh, 21911 Saudi Arabia ; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, Ibrahimia 21321 Egypt
| | - M Iqbal Choudhary
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia ; H.E.J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi, 75270 Pakistan
| | | | - Taibi Ben Hadda
- Laboratoire Chimie Matériaux, FSO, Université Mohammed 1ER, Oujda, 60000 Morocco
| |
Collapse
|
28
|
Mabkhot YN, Aldawsari FD, Al-Showiman SS, Barakat A, Ben Hadda T, Mubarak MS, Naz S, Ul-Haq Z, Rauf A. Synthesis, bioactivity, molecular docking and POM analyses of novel substituted thieno[2,3-b]thiophenes and related congeners. Molecules 2015; 20:1824-41. [PMID: 25621424 PMCID: PMC6272574 DOI: 10.3390/molecules20021824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/02/2023] Open
Abstract
Several series of novel substituted thienothiophene derivatives were synthesized by reacting the synthone 1 with different reagents. The newly synthesized compounds were characterized by means of different spectroscopic methods such as IR, NMR, mass spectrometry and by elemental analyses. The new compounds displayed significant activity against both Gram-positive and Gram negative bacteria, in addition to fungi. Molecular docking and POM analyses show the crucial role and impact of substituents on bioactivity and indicate the unfavorable structural parameters in actual drug design: more substitution doesn’t guaranty more efficiency in bioactivity.
Collapse
Affiliation(s)
- Yahia N. Mabkhot
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Y.N.M.); (A.B.); Tel.: +966-1467-5898 (Y.N.M.); +966-1467-5884 (A.B.); Fax: +966-1467-5992 (Y.N.M./A.B.)
| | - Fahad D. Aldawsari
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; E-Mail:
| | - Salim S. Al-Showiman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia 21321 Alexandria, Egypt
- Authors to whom correspondence should be addressed; E-Mails: (Y.N.M.); (A.B.); Tel.: +966-1467-5898 (Y.N.M.); +966-1467-5884 (A.B.); Fax: +966-1467-5992 (Y.N.M./A.B.)
| | - Taibi Ben Hadda
- Lab of Chemical Material, Faculty of Sciences University Mohammed Premier, Oujda 60000, Morocco; E-Mail:
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan; E-Mail:
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75210, Pakistan; E-Mails: (S.N.); (Z.U.-H.)
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75210, Pakistan; E-Mails: (S.N.); (Z.U.-H.)
| | - Abdur Rauf
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; E-Mail:
| |
Collapse
|