1
|
Ahsan MJ, Ali A, Ali A, Thiriveedhi A, Bakht MA, Yusuf M, Salahuddin, Afzal O, Altamimi AS. Pyrazoline Containing Compounds as Therapeutic Targets for Neurodegenerative Disorders. ACS OMEGA 2022; 7:38207-38245. [PMID: 36340076 PMCID: PMC9631758 DOI: 10.1021/acsomega.2c05339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 09/21/2023]
Abstract
Pyrazolines are a significant class of heterocyclic compounds with essential biological activities. They are quite stable, which has inspired medicinal chemists to experiment with the ring's structure in many different ways to create a variety of pharmacological activities. The structures of numerous commercially available therapeutic agents contain a pyrazoline ring. Pyrazolines are well-known for their ability to treat neurodegenerative diseases. The neurodegenerative diseases that affect huge populations globally include Alzheimer's disease (AD), Parkinson's disease (PD), and psychiatric disorders. The neuroprotective properties of pyrazolines published since 2003 are covered in the current review. Structure-activity relationships (SARs), molecular docking simulation, anticholinesterase (anti-AChE), and monoamine oxidase (MAO A/B) inhibitory actions are all covered in this article. Pyrazolines were discovered to have beneficial effects in the management of AD and were revealed to be inhibitors of acetylcholine esterase (AChE) and beta-amyloid (Aβ) plaques. They were discovered to be efficient against PD and also targeted MAO B and COMT. It was discovered that the pyrazolines block MAO A to treat psychiatric diseases. Pyrazolines are significant heteroaromatic scaffolds with a variety of biological functions. They were discovered to be remarkably stable and serve as an indispensable anchor for the development of new drugs. By blocking AChE and MAOs, they may be used to treat neurodegenerative diseases. The discussion outlined here is an essential and helpful resource for medicinal chemists who are investigating and applying pyrazolines in neurodegenerative research initiatives as well as to expedite future research programs on neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department
of Pharmaceutical Chemistry, Maharishi Arvind
College of Pharmacy, Jaipur, Rajasthan 302 039, India
| | - Amena Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arunkumar Thiriveedhi
- Vignan’s
Foundation for Science, Technology & Research Deemed to be University
Guntur, Vadlamudi, Andhra Pradesh 522213, India
| | - Mohammed A. Bakht
- Department
of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Yusuf
- Department
of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salahuddin
- Department
of Pharmaceutical Chemistry, Noida Institute
of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida, Uttar
Pradesh 201 306, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of
Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box- 173, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik Saleh
Alfawaz Altamimi
- Department
of Pharmaceutical Chemistry, College of
Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box- 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
2
|
Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur J Med Chem 2022; 242:114655. [PMID: 36037788 DOI: 10.1016/j.ejmech.2022.114655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
3
|
Ounalli C, Essid M, Bruno G, Santoro A, Abid S, Aloui Z. Synthesis, crystallographic structure, DFT computational studies and Hirschfeld surface analysis of a new tetranuclear anionic bromobismuthate(III): [C12H20N2]2Bi4Br16•2H2O. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Rehuman NA, Mathew B, Jat RK, Nicolotti O, Kim H. A Comprehensive Review of Monoamine Oxidase-A Inhibitors in their Syntheses and Potencies. Comb Chem High Throughput Screen 2021; 23:898-914. [PMID: 32342809 DOI: 10.2174/1386207323666200428091306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidases (MAOs) play a crucial role during the development of various neurodegenerative disorders. There are two MAO isozymes, MAO-A and MAO-B. MAO-A is a flavoenzyme, which binds to the outer mitochondrial membrane and catalyzes the oxidative transformations of neurotransmitters like serotonin, norepinephrine, and dopamine. MATERIALS AND METHODS Focus on synthetic studies has culminated in the preparation of many MAOA inhibitors, and advancements in combinatorial and parallel synthesis have accelerated the developments of synthetic schemes. Here, we provided an overview of the synthetic protocols employed to prepare different classes of MAO-A inhibitors. We classified these inhibitors according to their molecular scaffolds and the synthetic methods used. RESULTS Various synthetic and natural derivatives from a different class of MAO-A inhibitors were reported. CONCLUSION The review provides a valuable tool for the development of a new class of various selective MAO-A inhibitors for the treatment of depression and other anxiety disorders.
Collapse
Affiliation(s)
- Nisha A Rehuman
- Department of Pharmaceutical Chemistry, JJTU University, Jhunjhunu, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682, India
| | - Rakesh K Jat
- Department of Pharmaceutical Chemistry, JJTU University, Jhunjhunu, India
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
6
|
Nair AS, Oh JM, Koyiparambath VP, Kumar S, Sudevan ST, Soremekun O, Soliman ME, Khames A, Abdelgawad MA, Pappachen LK, Mathew B, Kim H. Development of Halogenated Pyrazolines as Selective Monoamine Oxidase-B Inhibitors: Deciphering via Molecular Dynamics Approach. Molecules 2021; 26:molecules26113264. [PMID: 34071665 PMCID: PMC8198649 DOI: 10.3390/molecules26113264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
Halogens have been reported to play a major role in the inhibition of monoamine oxidase (MAO), relating to diverse cognitive functions of the central nervous system. Pyrazoline/halogenated pyrazolines were investigated for their inhibitory activities against human monoamine oxidase-A and -B. Halogen substitutions on the phenyl ring located at the fifth position of pyrazoline showed potent MAO-B inhibition. Compound 3-(4-ethoxyphenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole (EH7) showed the highest potency against MAO-B with an IC50 value of 0.063 µM. The potencies against MAO-B were increased in the order of –F (in EH7) > –Cl (EH6) > –Br (EH8) > –H (EH1). The residual activities of most compounds for MAO-A were > 50% at 10 µM, except for EH7 and EH8 (IC50 = 8.38 and 4.31 µM, respectively). EH7 showed the highest selectivity index (SI) value of 133.0 for MAO-B, followed by EH6 at > 55.8. EH7 was a reversible and competitive inhibitor of MAO-B in kinetic and reversibility experiments with a Ki value of 0.034 ± 0.0067 µM. The molecular dynamics study documented that EH7 had a good binding affinity and motional movement within the active site with high stability. It was observed by MM-PBSA that the chirality had little effect on the overall binding of EH7 to MAO-B. Thus, EH7 can be employed for the development of lead molecules for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (A.S.N.); (V.P.K.); (S.K.); (S.T.S.)
| | - Jong-Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (A.S.N.); (V.P.K.); (S.K.); (S.T.S.)
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (A.S.N.); (V.P.K.); (S.K.); (S.T.S.)
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (A.S.N.); (V.P.K.); (S.K.); (S.T.S.)
| | - Opeyemi Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (O.S.); (M.E.S.)
| | - Mahmoud E. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (O.S.); (M.E.S.)
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box-11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Leena K. Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (A.S.N.); (V.P.K.); (S.K.); (S.T.S.)
- Correspondence: (L.K.P.); or (B.M.); (H.K.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (A.S.N.); (V.P.K.); (S.K.); (S.T.S.)
- Correspondence: (L.K.P.); or (B.M.); (H.K.)
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (L.K.P.); or (B.M.); (H.K.)
| |
Collapse
|
7
|
Nehra B, Rulhania S, Jaswal S, Kumar B, Singh G, Monga V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur J Med Chem 2020; 205:112666. [PMID: 32795767 DOI: 10.1016/j.ejmech.2020.112666] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/29/2022]
Abstract
Pyrazolines remain privileged heterocycles in drug discovery. 2-Pyrazoline scaffold has been proven as a ubiquitous motif which is present in a number of pharmacologically important drug molecules such as antipyrine, ramifenazone, ibipinabant, axitinib etc. They have been widely explored by the scientific community and are reported to possess wide spectrum of biological activities. For combating unprecedented diseases and worldwide increasing drug resistance, 2-pyrazoline has been tackled as a fascinating pharmacophore to generate new molecules with improved potency and lesser toxicity along with desired pharmacokinetic profile. This review aims to summarizes various recent advancements in the medicinal chemistry of pyrazoline based compounds with the following objectives: (1) To represent inclusive data on pyrazoline based marketed drugs as well as therapeutic candidates undergoing preclinical and clinical developments; (2) To discuss recent advances in the medicinal chemistry of pyrazoline derivatives with their numerous biological significances for the eradication of various diseases; (3) Summarizes structure-activity relationships (SAR) including in silico and mechanistic studies to afford ideas for the design and development of novel compounds with desired therapeutic implications.
Collapse
Affiliation(s)
- Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sandeep Rulhania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
8
|
Wu SM, Qiu XY, Liu SJ, Sun J. Single Heterocyclic Compounds as Monoamine Oxidase Inhibitors: From Past to Present. Mini Rev Med Chem 2020; 20:908-920. [PMID: 32116191 DOI: 10.2174/1389557520666200302114620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/19/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
Inhibitors of monoamine oxidase (MAO) have shown therapeutic values in a variety of neurodegenerative diseases such as depression, Parkinson's disease and Alzheimer's disease. Heterocyclic compounds exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel single heterocyclic derivatives with MAO inhibitory activities during the past decade. This review covers recent pharmacological advancements of single heterocyclic moiety along with structure- activity relationship to provide better correlation among different structures and their receptor interactions.
Collapse
Affiliation(s)
- Su-Min Wu
- College of Science & Technology, Ningbo University, Ningbo, 315212, China
| | - Xiao-Yang Qiu
- College of Science & Technology, Ningbo University, Ningbo, 315212, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu-Juan Liu
- College of Science & Technology, Ningbo University, Ningbo, 315212, China
| | - Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
| |
Collapse
|
9
|
Acar Çevik U, Osmaniye D, Sağlik BN, Levent S, Kaya Çavuşoğlu B, Özkay Y, Kaplancikli ZA. Synthesis and evaluation of new pyrazoline‐thiazole derivatives as monoamine oxidase inhibitors. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ulviye Acar Çevik
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryAnadolu University Eskişehir Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis LaboratoryAnadolu University Eskişehir Turkey
| | - Derya Osmaniye
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryAnadolu University Eskişehir Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis LaboratoryAnadolu University Eskişehir Turkey
| | - Begüm Nurpelin Sağlik
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryAnadolu University Eskişehir Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis LaboratoryAnadolu University Eskişehir Turkey
| | - Serkan Levent
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryAnadolu University Eskişehir Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis LaboratoryAnadolu University Eskişehir Turkey
| | - Betül Kaya Çavuşoğlu
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryAnadolu University Eskişehir Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis LaboratoryAnadolu University Eskişehir Turkey
| | - Yusuf Özkay
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryAnadolu University Eskişehir Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis LaboratoryAnadolu University Eskişehir Turkey
| | - Zafer Asım Kaplancikli
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryAnadolu University Eskişehir Turkey
- Faculty of Pharmacy, Doping and Narcotic Compounds Analysis LaboratoryAnadolu University Eskişehir Turkey
| |
Collapse
|
10
|
Tripathi RKP, Ayyannan SR. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med Res Rev 2019; 39:1603-1706. [PMID: 30604512 DOI: 10.1002/med.21561] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Monoamine oxidase (MAO) inhibitors have made significant contributions and remain an indispensable approach of molecular and mechanistic diversity for the discovery of antineurodegenerative drugs. However, their usage has been hampered by nonselective and/or irreversible action which resulted in drawbacks like liver toxicity, cheese effect, and so forth. Hence, the search for selective MAO inhibitors (MAOIs) has become a substantial focus in current drug discovery. This review summarizes our current understanding on MAO-A/MAO-B including their structure, catalytic mechanism, and biological functions with emphases on the role of MAO-B as a potential therapeutic target for the development of medications treating neurodegenerative disorders. It also highlights the recent developments in the discovery of potential MAO-B inhibitors (MAO-BIs) belonging to diverse chemical scaffolds, arising from intensive chemical-mechanistic and computational studies documented during past 3 years (2015-2018), with emphases on their potency and selectivity. Importantly, readers will gain knowledge of various newly established MAO-BI scaffolds and their development potentials. The comprehensive information provided herein will hopefully accelerate ideas for designing novel selective MAO-BIs with superior activity profiles and critical discussions will inflict more caution in the decision-making process in the MAOIs discovery.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.,Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Qiu GL, He SS, Chen SC, Li B, Wu HH, Zhang J, Tang WJ. Design, synthesis and biological evaluation of tricyclic pyrazolo[1,5-c][1,3]benzoxazin-5(5H)-one scaffolds as selective BuChE inhibitors. J Enzyme Inhib Med Chem 2018; 33:1506-1515. [PMID: 30284486 PMCID: PMC6179045 DOI: 10.1080/14756366.2018.1488696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Based on the structural analysis of tricyclic scaffolds as butyrylcholinesterase (BuChE) inhibitors, a series of pyrazolo[1,5-c][1,3]benzoxazin-5(5H)-one derivatives were designed, synthesized and evaluated for their acetylcholinesterase (AChE) and BuChE inhibitory activity. Compounds with 5-carbonyl and 7- or/and 9-halogen substitutions showed potential BuChE inhibitory activity, among which compounds 6a, 6c and 6g showed the best BuChE inhibition (IC50 = 1.06, 1.63 and 1.63 µM, respectively). The structure–activity relationship showed that the 5-carbonyl and halogen substituents significantly influenced BuChE activity. Compounds 6a and 6g were found nontoxic, lipophilic and exhibited remarkable neuroprotective activity and mixed-type inhibition against BuChE (Ki = 7.46 and 3.09 µM, respectively). Docking studies revealed that compound 6a can be accommodated into BuChE via five hydrogen bonds, one Pi–Sigma interaction and three Pi–Alkyl interactions.
Collapse
Affiliation(s)
- Guo-Liang Qiu
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Shao-Sheng He
- a School of Pharmacy , Anhui Medical University , Hefei , PR China.,b Lujiang County People's Hospital , Lujiang , Anhui , PR China
| | - Shi-Chao Chen
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Bo Li
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Hui-Hui Wu
- c Anhui Prevention and Treatment Center for Occupational Disease , Hefei , PR China
| | - Jing Zhang
- c Anhui Prevention and Treatment Center for Occupational Disease , Hefei , PR China
| | - Wen-Jian Tang
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| |
Collapse
|
12
|
Nakamuro T, Hagiwara K, Miura T, Murakami M. Enantioselective Denitrogenative Annulation of 1
H
‐Tetrazoles with Styrenes Catalyzed by Rhodium. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Takayuki Nakamuro
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Kohei Hagiwara
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| |
Collapse
|
13
|
Nakamuro T, Hagiwara K, Miura T, Murakami M. Enantioselective Denitrogenative Annulation of 1
H
‐Tetrazoles with Styrenes Catalyzed by Rhodium. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201801283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takayuki Nakamuro
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Kohei Hagiwara
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University Katsura Kyoto 615-8510 Japan
| |
Collapse
|
14
|
Tricyclic pyrazolo[1,5- d ][1,4]benzoxazepin-5(6H)-one scaffold derivatives: Synthesis and biological evaluation as selective BuChE inhibitors. Eur J Med Chem 2018; 147:194-204. [DOI: 10.1016/j.ejmech.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/24/2022]
|
15
|
Antimicrobial activities of pyridinium-tailored pyrazoles bearing 1,3,4-oxadiazole scaffolds. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Ashraf S, Hameed S, Tahir MN, Naseer MM. Synthesis and crystal structure of bis-chalcone-derived fused-ring pyrazoline having an unusual substitution pattern. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1995-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zhang TT, Wang PY, Zhou J, Shao WB, Fang HS, Zhou X, Wu ZB. Antibacterial and Antifungal Activities of 2-(substituted ether)-5-(1-phenyl-5-(trifluoromethyl)-1H
-pyrazol-4-yl)-1,3,4-oxadiazole Derivatives. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Teng-Teng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Jian Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - He-Shu Fang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| |
Collapse
|
18
|
Korablina DD, Vorozhtsov NI, Sviridova LA, Kalenikova EI, Medvedev OS. Pharmacological Activity of 4,5-Dihydropyrazole Derivatives (Review). Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1438-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Chen R, Xiao J, Ni Y, Xu HF, Zheng M, Tong X, Zhang TT, Liao C, Tang WJ. Novel tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one: Design, synthesis, model and use as hMAO-B inhibitors. Bioorg Med Chem 2016; 24:1741-8. [DOI: 10.1016/j.bmc.2016.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/24/2023]
|