1
|
Jiang D, Nie H, Wang Z, Xiong Y, Shen H, Gao Y, Zhu X, Mao Z. Developing oxaliplatin and IL-15 Co-carried gels as drug depots to enable triple-interlocked combination therapy for colorectal cancer. Colloids Surf B Biointerfaces 2024; 241:113996. [PMID: 38850745 DOI: 10.1016/j.colsurfb.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Chemo-immunotherapy, which involves the simultaneous use of chemotherapy drug and immunotherapeutic agent to achieve synergistic effects, plays a crucial role in cancer treatment. However, the immunosuppressive microenvironment, insufficient tumor specificity, and serious systemic side effects hinder their synergistic therapeutic effects and clinical applications. Herein, T cell and natural killer (NK) cell, which are the most important immune effector cells, were both activated to reverse the immunosuppressive microenvironment. To simplify drug carriers, oxaliplatin was selected as the chemotherapy drug which can both induce the ICD effect and activate T cells. IL-15 was selected to activate NK cells. To enhance the productivity of the carrier and reduce side effects, the easy-prepared thermosensitive hydrogel (OXL/IL-15 TG) was developed to co-load oxaliplatin-loaded liposomes (OXL) and IL-15. Colorectal cancer, suitable for in situ administration, was selected as model cancer. The resulting novel triple-interlocked combination therapy could directly kill the tumor cells, induces ICD effect and activate NK cells. After administration, OXL/IL-15 TG was formed serving as a drug depot, slowing releasing OXL and IL-15 non-interferencely. OXL around 165.47±7.04 nm was passively delivered to tumor tissue, killing tumor cells and inducing ICD effect. The results demonstrated that IL-15 stimulated the activation of NK cells. In tumor-bearing mice models, OXL/IL-15 TG exhibited a remarkable and noteworthy anti-tumor efficacy, and expanded survival rate. Notably, OXL/IL-15 TG led to an enhanced infiltration of CD3+CD8+ T cells and CD3-CD49+ NK cells within the tumor tissue. Overall, the triple-interlocked combination therapy provided a new idea for colorectal cancer therapy.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Haiqian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ziang Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuhan Xiong
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Huimin Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Xiali Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
2
|
Pilon A, Avecilla F, Mohai M, Enyedy ÉA, Rácz B, Spengler G, Garcia MH, Valente A. First iron(II) organometallic compound acting as ABCB1 inhibitor. Eur J Med Chem 2023; 256:115466. [PMID: 37187089 DOI: 10.1016/j.ejmech.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Five new iron (II) complexes bearing imidazole-based (Imi-R) ligands with the general formula [Fe(η5-C5H5)(CO)(PPh3)(Imi-R)][CF3SO3] were synthesized and fully characterized by several spectroscopic and analytical techniques. All compounds crystallize in centrosymmetric space groups in a typical "piano stool" distribution. Given the growing importance of finding alternatives to overcome different forms of multidrug resistance, all compounds were tested against cancer cell lines with different ABCB1 efflux pump expression, namely, the doxorubicin-sensitive (Colo205) and doxorubicin-resistant (Colo320) human colon adenocarcinoma cell lines. Compound 3 bearing 1-benzylimidazole was the most active in both cell lines with IC50 values of 1.26 ± 0.11 and 2.21 ± 0.26 μM, respectively, being also slightly selective against the cancer cells (vs. MRC5 normal human embryonic fibroblast cell lines). This compound, together with compound 2 bearing 1H-1,3-benzodiazole, were found to display very potent ABCB1 inhibitory effect. Compound 3 also showed the ability to induce cell apoptosis. Iron cellular accumulation studies by ICP-MS and ICP-OES methods revealed that the compounds' cytotoxicity is not related to the extent of iron accumulation. Yet, it is worth mentioning that, from the compounds tested, 3 was the only one where iron accumulation was greater in the resistant cell line than in the sensitive one, validating the possible role of ABCB1 inhibition in its mechanism of action.
Collapse
Affiliation(s)
- Adhan Pilon
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071, A Coruña, Spain
| | - Miklós Mohai
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Bálint Rácz
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725, Szeged, Hungary
| | - M Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
3
|
Coccè V, Rimoldi I, Facchetti G, Ciusani E, Alessandri G, Signorini L, Sisto F, Giannì A, Paino F, Pessina A. In Vitro Activity of Monofunctional Pt-II Complex Based on 8-Aminoquinoline against Human Glioblastoma. Pharmaceutics 2021; 13:pharmaceutics13122101. [PMID: 34959382 PMCID: PMC8704014 DOI: 10.3390/pharmaceutics13122101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
A new cationic Pt(II) complex bearing 8-aminoquinoline as chelating ligand (called Pt-8AQ) was evaluated against two human carcinomas, one mesothelioma, and three glioblastoma cell lines. The in vitro comparison to the clinically approved CisPt showed a minor activity of Pt-8AQ against carcinoma and mesothelioma, whereas a significant activity of Pt-8AQ was observed on the proliferation of the three glioblastoma cell lines (U87-MG IC50 = 3.68 ± 0.69 µM; U373-MG IC50 = 11.53 ± 0.16 µM; U138-MG IC50 = 8.05 ± 0.23 µM) that was higher than that observed with the clinically approved CisPt (U87-MG IC50 = 7.27 + 1.80 µM; U373-MG IC50 = 22.69 ± 0.05 µM; U138-MG IC50 = 32.1 ± 4.44 µM). Cell cycle analysis proved that Pt-8AQ significantly affected the cell cycle pattern by increasing the apoptotic cells represented by the sub G0/G1 region related with a downregulation of p53 and Bcl-2. Moreover, an NMR investigation of Pt-8AQ interaction with 9-EtG, GSH, and Mets7 excluded DNA as the main target, suggesting a novel mechanism of action. Our study demonstrated the high stability of Pt-8AQ after incubation at 37 °C and a significant antineoplastic activity on glioblastomas. These features also make Pt-8AQ a good candidate for developing a new selective advanced cell chemotherapy approach in combination with MSCs.
Collapse
Affiliation(s)
- Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Isabella Rimoldi
- Department of Pharmaceutical Science, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Giorgio Facchetti
- Department of Pharmaceutical Science, University of Milan, Via Golgi 19, 20133 Milan, Italy;
- Correspondence: (G.F.); (A.P.)
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine, Fondazione IRCCS Neurological Institute Carlo Besta, 20133 Milan, Italy;
| | - Giulio Alessandri
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy;
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Aldo Giannì
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
- Maxillo-Facial and Dental Unit, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Paino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
- Correspondence: (G.F.); (A.P.)
| |
Collapse
|
4
|
Novel Benzimidazole- Platinum(II) Complexes: Synthesis, Characterization, Antimicrobial and Anticancer Activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Pursuwani BH, Bhatt BS, Vaidya FU, Pathak C, Patel MN. Fluorescence, DNA Interaction and Cytotoxicity Studies of 4,5-Dihydro-1H-Pyrazol-1-Yl Moiety Based Os(IV) Compounds: Synthesis, Characterization and Biological Evaluation. J Fluoresc 2021; 31:349-362. [PMID: 33389418 DOI: 10.1007/s10895-020-02657-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Osmium(IV) pyrazole compounds and ligands were synthesized and well characterised. Ligands were characterized by heteronuclear NMR spectroscopy (1H & 13C), elemental analysis, IR spectroscopy and liquid crystal mass spectroscopy. Os(IV) complexes were characterized by ESI-MS, ICP-OES, IR spectroscopy, conductance measurements, magnetic measurements and electronic spectroscopy. Binding of compounds with HS-DNA were evaluated using viscosity measurements, absorption titration, fluorescence quenching, and molecular docking, which show effective intercalation mode exhibited by compounds. Binding constant of Os(IV) complexes are found to be 8.1 to 9.2 × 104 M-1. Bacteriostatic and cytotoxic activities were carried out to evaluate MIC, LC50, and IC50. The compounds have been undergone bacteriostatic screening using three sets of Gram+ve and two sets of Gram-ve bacteria. MIC of complexes are found to be 72.5-100 μM, whereas that of ligands fall at about 122.5-150 μM.. LC50 count of ligands fall in the range of 16.22-17.28 μg/mL whereas that of complexes of Os(IV) fall in the range of 4.87-5.87 μg/mL. IC50 of osmium compounds were evaluated using HCT-116 cell line. All the Os(IV) compounds show moderate IC50.
Collapse
Affiliation(s)
- Bharat H Pursuwani
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India
| | - Foram U Vaidya
- Cell Biology Laboratory, Indian Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382421, India
| | - Chandramani Pathak
- Cell Biology Laboratory, Indian Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382421, India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India.
| |
Collapse
|
6
|
Rimoldi I, Bucci R, Feni L, Santagostini L, Facchetti G, Pellegrino S. Exploring the copper binding ability of Mets7 hCtr-1 protein domain and His7 derivative: An insight in Michael addition catalysis. J Pept Sci 2020; 27:e3289. [PMID: 33094563 DOI: 10.1002/psc.3289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Mets7 is a methionine-rich motif present in hCtr-1 transporter that is involved in copper cellular trafficking. Its ability to bind Cu(I) was recently exploited to develop metallopeptide catalysts for Henry condensation. Here, the catalytic activity of Mets7-Cu(I) complex in Michael addition reactions has been evaluated. Furthermore, His7 peptide, in which Met residues have been substituted with His ones, was also prepared. This substitution allowed His7 to coordinate Cu (II), with the obtainment of a stable turn conformation as evicted by CD experiments. His7-Cu (II) proved also to be a better catalyst than Mets7-Cu(I) in the addition reaction. In particular, when the substrate was the (E)-1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one, a conversion of 71% and a significative 58% of e.e. was observed.
Collapse
Affiliation(s)
- Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Lucia Feni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | | | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Abedi M, Abolmaali SS, Abedanzadeh M, Farjadian F, Mohammadi Samani S, Tamaddon AM. Core-Shell Imidazoline-Functionalized Mesoporous Silica Superparamagnetic Hybrid Nanoparticles as a Potential Theranostic Agent for Controlled Delivery of Platinum(II) Compound. Int J Nanomedicine 2020; 15:2617-2631. [PMID: 32368044 PMCID: PMC7182466 DOI: 10.2147/ijn.s245135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction As widely used chemotherapeutic agents, platinum compounds have several therapeutic challenges, such as drug resistance and adverse effects. Theranostic systems, macromolecular or colloidal therapeutics with companion diagnostics, not only address controlled drug delivery but also enable real-time monitoring of tumor sites. Methods Synthesis of magnetic mesoporous silica nanoparticles (MMSNs) was performed for dual magnetic resonance imaging and drug delivery. MMSN surfaces were modified by imidazoline groups (MMSN-Imi) for cisplatin (Cis-Pt) conjugation via free N-termini to achieve well-controlled drug-release kinetics. Cis-Pt adsorption isotherms and drug-release profile at pH 5 and 7.4 were investigated using inductively coupled plasma atomic emission spectroscopy. Results MMSN-Imi showed a specific surface area of 517.6 m2 g−1, mean pore diameter of 3.26 nm, and saturated magnetization of 53.63 emu/g. A relatively high r2/r1 relaxivity value was obtained for MMSN-Imi. The nanoparticles provided high Cis-Pt loading with acceptable loading capacity (~30% w:w). Sustained release of Cis-Pt under acidic conditions led to specific inhibitory effects on the growth of human epithelial ovarian carcinoma cells, determined using MTT assays. Dual acridine orange–propidium iodide staining was investigated, confirming induction of apoptosis and necrotic cell death. Conclusion MMSN-Imi exhibited potential for applications in cancer chemotherapy and combined imaging.
Collapse
Affiliation(s)
- Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mozhgan Abedanzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Fatemeh Farjadian
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Soliman Mohammadi Samani
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
8
|
Facchetti G, Ferri N, Lupo MG, Giorgio L, Rimoldi I. Monofunctional PtII
Complexes Based on 8-Aminoquinoline: Synthesis and Pharmacological Characterization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milan Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Via Marzolo 5 35131 Padua Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Via Marzolo 5 35131 Padua Italy
| | - Lucchini Giorgio
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia epartment; Università degli Studi di Milano; Via Celoria 2 20133 Milan Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milan Italy
| |
Collapse
|
9
|
Anticancer platinum(II) complexes bearing N-heterocycle rings. Bioorg Med Chem Lett 2019; 29:1257-1263. [DOI: 10.1016/j.bmcl.2019.03.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/21/2023]
|
10
|
Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines. Biomed Pharmacother 2018; 108:111-118. [PMID: 30218855 DOI: 10.1016/j.biopha.2018.09.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 ± 9.57 μM versus 34.66 ± 7.65 μM for CisPt) and U87 MG glioblastoma (19.85 ± 0.97 μM versus 54.14 ± 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50 = 71.9 ± 15.1 μM for caPt(II)-complex and 8.7 ± 4.5 μM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery.
Collapse
|
11
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
Facchetti G, Petrella F, Spaggiari L, Rimoldi I. Malignant Pleural Mesothelioma: State of the art and advanced cell therapy. Eur J Med Chem 2017; 142:266-270. [PMID: 28800871 DOI: 10.1016/j.ejmech.2017.07.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022]
Abstract
Malignant Pleural Mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy, with a response rate of 20% of patients and for this reason an efficient treatment is still a challenge. Platinum-based chemotherapy in association with a third-generation antifolate is the front-line standard of care whereas any second-line treatment was approved for MPM thus making it a pathology that evokes the need for new therapeutic agents. Different platinum-drugs were synthesised and tested as an option for patients who are not candidates to cisplatin-based therapy. Among these, monofunctional cationic antineoplastic platinum compounds received a special attention in the last decade. Alternative strategies to the commonly used combination-therapy resulted from the use of Mesenchymal Stromal Cells (MSC) widely used in the field of regenerative medicine and recently proposed as natural carriers for a selective delivery of chemotherapeutic agents and from the use of immune checkpoint and kinase inhibitors. The present short review shed light on the recent state of art and the future perspectives relative to MPM therapy.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Francesco Petrella
- Department of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Golgi 19, 20133 Milan, Italy.
| |
Collapse
|
13
|
Porta F, Gelain A, Barlocco D, Ferri N, Marchianò S, Cappello V, Basile L, Guccione S, Meneghetti F, Villa S. A field-based disparity analysis of new 1,2,5-oxadiazole derivatives endowed with antiproliferative activity. Chem Biol Drug Des 2017; 90:820-839. [DOI: 10.1111/cbdd.13003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Federica Porta
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Milan Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Milan Italy
| | - Daniela Barlocco
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Milan Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Padua Italy
| | - Silvia Marchianò
- Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milan Italy
| | - Valentina Cappello
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Catania Italy
| | - Livia Basile
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Catania Italy
| | - Salvatore Guccione
- Dipartimento di Scienze del Farmaco; Università degli Studi di Catania; Catania Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Milan Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
14
|
Porta F, Facchetti G, Ferri N, Gelain A, Meneghetti F, Villa S, Barlocco D, Masciocchi D, Asai A, Miyoshi N, Marchianò S, Kwon BM, Jin Y, Gandin V, Marzano C, Rimoldi I. An in vivo active 1,2,5-oxadiazole Pt(II) complex: A promising anticancer agent endowed with STAT3 inhibitory properties. Eur J Med Chem 2017; 131:196-206. [DOI: 10.1016/j.ejmech.2017.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/04/2023]
|
15
|
In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety. Bioorg Med Chem 2017; 25:1907-1913. [DOI: 10.1016/j.bmc.2017.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
|
16
|
Presa A, Barrios L, Cirera J, Korrodi-Gregório L, Pérez-Tomás R, Teat SJ, Gamez P. Non-Switching 1,2-Dithienylethene-based Diplatinum(II) Complex Showing High Cytotoxicity. Inorg Chem 2016; 55:5356-64. [PMID: 27152916 DOI: 10.1021/acs.inorgchem.6b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A diplatinum(II) complex was prepared from a new 1,2-dithienylethene-based ligand containing N-methylimidazole groups as metal-binding units. Reaction of the ligand 1,2-bis[2-methyl-5-(1-methyl-1H-imidazol-2-yl)-3-thienyl]-cyclopentene (L2(H)) with cis-dichlorobis(dimethylsulfoxido)platinum(II) generated the bimetallic complex trans-[Pt2Cl4(DMSO)2(L2(H))] (DMSO = dimethyl sulfoxide), whose DNA-interacting properties were investigated using different techniques. Cytotoxicity assays with various cancer cell lines showed that this compound is active, with IC50 values in the micromolar range. Surprisingly, the diplatinum(II) complex does not exhibit the anticipated photoswitching properties; indeed, UV irradiation does not lead to the photocyclization of the ligand L2(H) or of the metal complex. Computational studies were performed and revealed significant differences in the electronic structure of L2(H) compared with L1(H) (i.e., 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]-cyclopentene, which exhibits photoswitching properties), in terms of the relevant molecular orbitals involved in the UV-vis absorption features, which ultimately is responsible for the inertia of L2(H) toward photocyclization.
Collapse
Affiliation(s)
| | | | | | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona , Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain.,Department of Medical Sciences, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro , Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona , Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley California 94720, United States
| | - Patrick Gamez
- Catalan Institution for Research and Advanced Studies , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
17
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Pellegrino S, Facchetti G, Contini A, Gelmi ML, Erba E, Gandolfi R, Rimoldi I. Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(i)-catalyzed asymmetric Henry reactions under green conditions. RSC Adv 2016. [DOI: 10.1039/c6ra16255j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hybrid catalysts were developed from the Cu(i) binding domain of Ctr1 protein and their activity was evaluated in an asymmetric Henry reaction.
Collapse
Affiliation(s)
- Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
19
|
The reaction of a platinated methionine motif of CTR1 with cysteine and histidine is dependent upon the type of precursor platinum complex. J Inorg Biochem 2015; 153:239-246. [DOI: 10.1016/j.jinorgbio.2015.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/15/2015] [Indexed: 01/23/2023]
|
20
|
Synthesis and biological evaluation of novel platinum complexes of imidazolyl-containing bisphosphonates as potential anticancer agents. J Biol Inorg Chem 2015; 20:1263-75. [DOI: 10.1007/s00775-015-1305-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/17/2015] [Indexed: 10/22/2022]
|