1
|
Toles ZEA, Thierer LM, Wu A, Bezold EL, Rachii D, Sanchez CA, Vargas-Cuebas GG, Keller TM, Carroll PJ, Wuest WM, Minbiole KPC. Bushy-Tailed QACs: The Development of Multicationic Quaternary Ammonium Compounds with a High Degree of Alkyl Chain Substitution. ChemMedChem 2024; 19:e202400301. [PMID: 38877605 DOI: 10.1002/cmdc.202400301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Quaternary ammonium compounds have served as a first line of protection for human health as surface disinfectants and sanitizers for nearly a century. However, increasing levels of bacterial resistance have spurred the development of novel QAC architectures. In light of the observed reduction in eukaryotic cell toxicity when the alkyl chains on QACs are shorter in nature (≤10 C), we prepared 47 QAC architectures that bear multiple short alkyl chains appended to up to three cationic groups, thus rendering them "bushy-tailed" multiQACs. Antibacterial activity was strong (often ~1-4 μM) in a varied set of bushy-tailed architectures, though observed therapeutic indices were not significantly improved over QAC structures bearing fewer and longer alkyl chains.
Collapse
Affiliation(s)
- Zachary E A Toles
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Laura M Thierer
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Alice Wu
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Elise L Bezold
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Diana Rachii
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | | | | - Taylor M Keller
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
2
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|
3
|
Patel A, Dey S, Shokeen K, Karpiński TM, Sivaprakasam S, Kumar S, Manna D. Sulfonium-based liposome-encapsulated antibiotics deliver a synergistic antibacterial activity. RSC Med Chem 2021; 12:1005-1015. [PMID: 34223166 PMCID: PMC8221259 DOI: 10.1039/d1md00091h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/01/2021] [Indexed: 12/29/2022] Open
Abstract
The devastating antibacterial infections, coupled with their antibiotic resistance abilities, emphasize the need for effective antibacterial therapeutics. In this prospect, liposomal delivery systems have been employed in improving the efficacy of the antibacterial agents. The liposome-based antibiotics enhance the therapeutic potential of the new or existing antibiotics and reduce their adverse effects. The current study describes the development of sulfonium-based antibacterial lipids that demonstrate the delivery of existing antibiotics. The presence of cationic sulfonium moieties and inherent membrane targeting abilities of the lipids could help reduce the antibiotic resistance abilities of the bacteria and deliver the antibiotics to remove the infectious pathogens electively. The transmission electron microscopic images and dynamic light scattering analyses revealed the liposome formation abilities of the sulfonium-based amphiphilic compounds in the aqueous medium. The effectiveness of the compounds was tested against the Gram-negative and Gram-positive bacterial strains. The viability of the bacterial cells was remarkably reduced in the presence of the compounds. The sulfonium-based compounds with pyridinium moiety and long hydrocarbon chains showed the most potent antibacterial activities among the tested compounds. Mechanistic studies revealed the membrane-targeted bactericidal activities of the compounds. The potent compound also showed tetracycline and amoxicillin encapsulation and sustained release profiles in the physiologically relevant medium. The tetracycline and amoxicillin-encapsulated lipid showed much higher antibacterial activities than the free antibiotics at similar concentrations, emphasizing the usefulness of the synergistic effect of sulfonium-based lipid and the antibiotics, signifying that the sulfonium lipid penetrated the bacterial membrane and increased the cellular uptake of the antibiotics. The potent lipid also showed therapeutic potential, as it is less toxic to mammalian cells (like HeLa and HaCaT cells) at concentrations higher than their minimum inhibitory concentration values against S. aureus, E. coli, and MRSA. Hence, the sulfonium-based lipid exemplifies a promising framework for assimilating various warheads, and provides a potent antibacterial material.
Collapse
Affiliation(s)
- Anjali Patel
- Indian Institute of Technology Guwahati, Centre for the Environment Guwahati Assam India
| | - Subhasis Dey
- Biological Chemistry Laboratory, Indian Institute of Technology Guwahati, Chemistry Guwahati Assam India
| | - Kamal Shokeen
- Indian Institute of Technology Guwahati, Biosciences and Bioengineering Guwahati Assam India
| | - Tomasz M Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences Wieniawskiego Poznań Poland
| | | | - Sachin Kumar
- Indian Institute of Technology Guwahati, Biosciences and Bioengineering Guwahati Assam India
| | - Debasis Manna
- Indian Institute of Technology Guwahati, Centre for the Environment Guwahati Assam India
- Biological Chemistry Laboratory, Indian Institute of Technology Guwahati, Chemistry Guwahati Assam India
| |
Collapse
|
4
|
Chen Z, Xie D, Song B, Li C, Pei X, Li R. Worm-like micelles constructed by “pseudo” tetrameric surfactants containing azobenzene groups. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Shaban M, Eid A, Farag R, Negm N, Fadda A, Migahed M. Novel trimeric cationic pyrdinium surfactants as bi-functional corrosion inhibitors and antiscalants for API 5L X70 carbon steel against oilfield formation water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Obłąk E, Piecuch A, Rewak-Soroczyńska J, Paluch E. Activity of gemini quaternary ammonium salts against microorganisms. Appl Microbiol Biotechnol 2018; 103:625-632. [PMID: 30460534 DOI: 10.1007/s00253-018-9523-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Quaternary ammonium salts (QAS), as the surface active compounds, are widely used in medicine and industry. Their common application is responsible for the development of microbial resistance to QAS. To overcome, this issue novel surfactants, including gemini-type ones, were developed. These unique compounds are built of two hydrophilic and two hydrophobic parts. The double-head double-tail type of structure enhances their physicochemical properties (like surface activity) and biological activity and makes them a potential candidate for new drugs and disinfectants. Antimicrobial activity is mainly attributed to the biocidal action towards bacteria and fungi in their planktonic and biofilm forms, but the mode of action of gemini QAS is not yet fully understood. Moreover, gemini surfactants are of particular interest towards their application as gene carriers. Cationic charge of gemini QAS and their ability to form liposomes facilitate DNA compaction and transfection of the target cells. Multifunctional nature of gemini QAS is the reason of the long-standing research on mainly their structure-activity relationship.
Collapse
Affiliation(s)
- Ewa Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Agata Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Justyna Rewak-Soroczyńska
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Emil Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
7
|
Fan Y, Wang Y. Self-Assembly and Functions of Star-Shaped Oligomeric Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11220-11241. [PMID: 29616549 DOI: 10.1021/acs.langmuir.8b00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligomeric surfactants consist of three or more amphiphilic moieties which are connected by spacer groups covalently at the level of headgroups. It provides a possible route to bridge the gap from conventional single-chain surfactants to polymeric surfactants and leads to many profound improvements in the properties of surfactants in aqueous solution and at the air/water and water/solid interfaces. Generally, oligomeric surfactants are categorized into linear, ring-like, and star-shaped on the basis of the topological structures of their spacer groups, and their aggregation behavior strongly depends on the resultant topological structures. In recent years, we studied trimeric, tetrameric, and hexameric surfactants with a star-shaped spacer which spreads from a central site of elemental nitrogen or carbon, and their charged headgroups connect with each other through the spacers. It has been found that both the nature of spacer groups and the degree of oligomerization show important influences on the self-assembly of oligomeric surfactants and provide great possibilities in fabricating various surfactant aggregate morphologies by adjusting the molecule conformations. The unique self-assembly behavior endows them with superior physicochemical properties and potential applications. This feature article summarizes the development of star-shaped oligomeric surfactants, including self-assembly at the air/water and water/solid interfaces, self-assembly in aqueous solution, and their functions. We expect that this review could provide a comprehensive understanding of the structure-property relationship and various potential applications of star-shaped oligomeric surfactants and offer additional motivation for their future research.
Collapse
Affiliation(s)
- Yaxun Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
8
|
Paluch E, Piecuch A, Obłąk E, Lamch Ł, Wilk KA. Antifungal activity of newly synthesized chemodegradable dicephalic-type cationic surfactants. Colloids Surf B Biointerfaces 2018; 164:34-41. [PMID: 29413614 DOI: 10.1016/j.colsurfb.2018.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants - N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31), which are of particular interest, as they contain a labile amide group in the molecule and their antifungal activity. Therefore, the minimal inhibitory and fungicidal concentrations (MIC and MFC) of dicephalic surfactants against various fungi were tested using standardized methods. Most of the tested fungi were resistant to the Cn(TAPABr)2 compounds. The strongest growth inhibition was caused by Cn(DAPACl)2 series, which MICs ranged from 6.5 to 16 μM. The influence of dicephalic surfactants on Candida albicans biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction of fungal adhesion was also observed, especially to the glass surface. One of the compounds (C14(DAPACl)2) caused DNA leakage from C. albicans cells. Further studies showed the impact of dicephalic surfactants on ROS production, accumulation of lipid droplets and filament formation. This study points to the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation or as disinfectants. The results give an insight into the possible mechanism of action of newly synthesized dicephalic surfactants in yeast cells.
Collapse
Affiliation(s)
- E Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - A Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - E Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | - Ł Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - K A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
9
|
Gallagher TM, Marafino JN, Wimbish BK, Volkers B, Fitzgerald G, McKenna K, Floyd J, Minahan NT, Walsh B, Thompson K, Bruno D, Paneru M, Djikeng S, Masters S, Haji S, Seifert K, Caran KL. Hydra amphiphiles: Using three heads and one tail to influence aggregate formation and to kill pathogenic bacteria. Colloids Surf B Biointerfaces 2017. [PMID: 28645045 DOI: 10.1016/j.colsurfb.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydra amphiphiles mimic the morphology of the mythical multi-headed creatures for which they are named. Likewise, when faced with a pathogenic bacterium, some hydra derivatives are as destructive as their fabled counterparts were to their adversaries. This report focuses on eight new tricephalic (triple-headed), single-tailed amphiphiles. Each amphiphile has a mesitylene (1,3,5-trimethylbenzene) core, two benzylic trimethylammonium groups and one dimethylalkylammonium group with a linear hydrophobe ranging from short (C8H17) to ultralong (C22H45). The logarithm of the critical aggregation concentration, log(CAC), decreases linearly with increasing tail length, but with a smaller dependence than that of ionic amphiphiles with fewer head groups. Tail length also affects antibacterial activity; amphiphiles with a linear 18 or 20 carbon atom hydrophobic chain are more effective at killing bacteria than those with shorter or longer chains. Comparison to a recently reported amphiphilic series with three heads and two tails allows for the development of an understanding of the relationship between number of tails and both colloidal and antibacterial properties.
Collapse
Affiliation(s)
- Tara M Gallagher
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - John N Marafino
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA; James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA
| | - Brenden K Wimbish
- James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA
| | - Brandi Volkers
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - Gabriel Fitzgerald
- James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA
| | - Kristin McKenna
- James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA
| | - Jason Floyd
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - Nicholas T Minahan
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - Brenna Walsh
- James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA
| | - Kirstie Thompson
- James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA
| | - David Bruno
- James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA
| | - Monica Paneru
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - Sybelle Djikeng
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - Stephanie Masters
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - Suma Haji
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA
| | - Kyle Seifert
- James Madison University, Department of Biology, 951 Carrier Drive, MSC 7801, Harrisonburg, VA 22807, USA.
| | - Kevin L Caran
- James Madison University, Department of Chemistry and Biochemistry, 901 Carrier Drive, MSC 4501, Harrisonburg, VA 22807, USA.
| |
Collapse
|
10
|
Minbiole KP, Jennings MC, Ator LE, Black JW, Grenier MC, LaDow JE, Caran KL, Seifert K, Wuest WM. From antimicrobial activity to mechanism of resistance: the multifaceted role of simple quaternary ammonium compounds in bacterial eradication. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tomašić V, Mihelj T. The review on properties of solid catanionic surfactants: Main applications and perspectives of new catanionic surfactants and compounds with catanionic assisted synthesis. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1180992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vlasta Tomašić
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tea Mihelj
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
12
|
Heerschap S, Marafino JN, McKenna K, Caran KL, Feitosa K. Foams stabilized by tricationic amphiphilic surfactants. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|