1
|
Inagaki Y, Kamikubo T, Kuriwaki I, Watanabe J, Yamaki S, Iida M, Tomita K, Kakefuda K, Kurokawa J, Kiso T, Saba K, Koike T. Discovery of 2-(6-{[(1R,2R)-2-hydroxycyclohexyl]amino}-4,5-dimethylpyridazin-3-yl)-5-(trifluoromethyl)phenol (ASP0965): A potent, orally active and brain-penetrable NLRP3 inflammasome inhibitor with a novel scaffold for the treatment of α-synucleinopathy. Bioorg Med Chem 2025; 118:118042. [PMID: 39742857 DOI: 10.1016/j.bmc.2024.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
NLRP3 inflammasome inhibitor is a highly attractive drug target for the treatment of various inflammatory diseases. Here, we report the discovery of pyridazine derivatives as a new class of scaffold for NLRP3 inflammasome inhibitors. We optimized HTS hit 2a to improve both in vitro IL-1β inhibitory activity and the mean photo effect (MPE) value in the in vitro 3T3 neutral red uptake (NRU) phototoxicity test. As a result, we identified compound 5e (ASP0965) with brain penetrability and showing efficacy in the brain on oral administration in the rat pharmacodynamics (PD) model and the mouse α-synuclein injection model. These findings suggest that compound 5e is a promising clinical candidate for α-synucleinopathy therapeutics.
Collapse
Affiliation(s)
- Yusuke Inagaki
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | - Takashi Kamikubo
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ikumi Kuriwaki
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Junko Watanabe
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Susumu Yamaki
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Maiko Iida
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kyoko Tomita
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kenichi Kakefuda
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Jun Kurokawa
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tetsuo Kiso
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kengo Saba
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Takanori Koike
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
2
|
Harrison TJ, Chen X, Yasoshima K, Bauer D. Phototoxicity─Medicinal Chemistry Strategies for Risk Mitigation in Drug Discovery. J Med Chem 2023. [PMID: 37450689 DOI: 10.1021/acs.jmedchem.3c00749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Phototoxicity is a common safety concern encountered by project teams in pharmaceutical research and has the potential to stop progression of an otherwise promising candidate molecule. This perspective aims to provide an overview of the approaches toward mitigation of phototoxicity that medicinal chemists have taken during the lead optimization phase in the context of regulatory standards for photosafety evaluation. Various strategies are laid out based on available literature examples in order to highlight how structural modification can be utilized toward successful mitigation of a phototoxicity liability. A proposed flowchart is presented as a guidance tool to be used by the practicing medicinal chemist when facing a phototoxicity risk. The description of available tools to consider in the drug design process will include an overview of the evolution of in silico methods and their application as well as structure alerts for consideration as potential phototoxicophores.
Collapse
Affiliation(s)
- Tyler J Harrison
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Xin Chen
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Kayo Yasoshima
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Daniel Bauer
- Preclinical Safety, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
3
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, Schiöth HB. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front Pharmacol 2022; 13:1057083. [PMID: 36506513 PMCID: PMC9731127 DOI: 10.3389/fphar.2022.1057083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The phosphodiesterase (PDE) enzymes, key regulator of the cyclic nucleotide signal transduction system, are long-established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a particularly high number of clinical trials involving PDE inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 87 agents with PDE-inhibiting capacity, of which 85 interact with PDE enzymes as primary target. We provide an overview of the clinical drug development with focus on the current clinical uses, novel molecules and indications, highlighting relevant clinical studies. We found that the bulk of current clinical uses for this class of therapeutic agents are chronic obstructive pulmonary disease (COPD), vascular and cardiovascular disorders and inflammatory skin conditions. In COPD, particularly, PDE inhibitors are characterised by the compliance-limiting adverse reactions. We discuss efforts directed to appropriately adjusting the dose regimens and conducting structure-activity relationship studies to determine the effect of structural features on safety profile. The ongoing development predominantly concentrates on central nervous system diseases, such as schizophrenia, Alzheimer's disease, Parkinson's disease and fragile X syndrome; notable advancements are being also made in mycobacterial infections, HIV and Duchenne muscular dystrophy. Our analysis predicts the diversification of PDE inhibitors' will continue to grow thanks to the molecules in preclinical development and the ongoing research involving drugs in clinical development.
Collapse
Affiliation(s)
- Andrey D. Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden,*Correspondence: Helgi B. Schiöth,
| |
Collapse
|
4
|
Jankowska A, Świerczek A, Wyska E, Gawalska A, Bucki A, Pawłowski M, Chłoń-Rzepa G. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Curr Drug Targets 2020; 20:122-143. [PMID: 30091414 DOI: 10.2174/1389450119666180808105056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase 10A (PDE10A) is a double substrate enzyme that hydrolyzes second messenger molecules such as cyclic-3',5'-adenosine monophosphate (cAMP) and cyclic-3',5'-guanosine monophosphate (cGMP). Through this process, PDE10A controls intracellular signaling pathways in the mammalian brain and peripheral tissues. Pharmacological, biochemical, and anatomical data suggest that disorders in the second messenger system mediated by PDE10A may contribute to impairments in the central nervous system (CNS) function, including cognitive deficits as well as disturbances of behavior, emotion processing, and movement. This review provides a detailed description of PDE10A and the recent advances in the design of selective PDE10A inhibitors. The results of preclinical studies regarding the potential utility of PDE10A inhibitors for the treatment of CNS-related disorders, such as schizophrenia as well as Huntington's and Parkinson's diseases are also summarized.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
5
|
Kawamoto Y, Tomino M, Hiramatsu K, Oyama Y, Hayashi Y. Benzothiophene derivatives as phosphodiesterase 10A (PDE10A) inhibitors: Hit-to-lead studies. Bioorg Med Chem Lett 2019; 29:1419-1422. [DOI: 10.1016/j.bmcl.2019.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
|
6
|
Chino A, Seo R, Amano Y, Namatame I, Hamaguchi W, Honbou K, Mihara T, Yamazaki M, Tomishima M, Masuda N. Fragment-Based Discovery of Pyrimido[1,2- b]indazole PDE10A Inhibitors. Chem Pharm Bull (Tokyo) 2018; 66:286-294. [DOI: 10.1248/cpb.c17-00836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ayaka Chino
- Drug Discovery Research, Astellas Pharma Inc
| | - Ryushi Seo
- Drug Discovery Research, Astellas Pharma Inc
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Han X, Li HM, Xu C, Xiao ZQ, Wang ZQ, Fu WJ, Hao XQ, Song MP. Water-soluble palladacycles containing hydroxymethyl groups: synthesis, crystal structures and use as catalysts for amination and Suzuki coupling of reactions. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|