1
|
Faris A, Hadni H, Ibrahim IM, Elhallaoui M. In silico discovery of potent and selective Janus kinase 3 (JAK3) inhibitors through 3D-QSAR, covalent docking, ADMET analysis, molecular dynamics simulations, and binding free energy of pyrazolopyrimidine derivatives. J Biomol Struct Dyn 2024; 42:4817-4833. [PMID: 37338041 DOI: 10.1080/07391102.2023.2222839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Rheumatoid arthritis is a prevalent and debilitating chronic disease worldwide. Targeting Janus kinase 3 (JAK3) has emerged as a crucial molecular strategy to treat this condition. In this study, we employed a comprehensive theoretical approach that included 3D-QSAR, covalent docking, ADMET, and molecular dynamics to propose and optimize new anti-JAK3 compounds. We investigated a series of 28 1H-pyrazolo[3.4-d]pyrimidin-4-amino inhibitors and developed a highly accurate 3D-QSAR model using comparative molecular similarity index analysis (COMSIA). The model predicted with Q2 = 0.59, R2 = 0.96, and R2(Pred) = 0.89, was validated using Y-randomization and external validation methods. Our covalent docking studies identified T3 and T5 as highly potent inhibitors of JAK3 compared to the reference ligand 17. Additionally, we evaluated the ADMET properties and drug similarity of our newly developed compounds and reference ligand, providing critical insights for further optimization of anti-JAK3 medications. Furthermore, MM-GBSA analysis showed promising results for the designed compounds. Finally, we validated our docking results using molecular dynamics simulations, which confirmed the stability of hydrogen bonding contacts with key residues required to block JAK3 activity. Our findings offer new chemical scaffolds and insights that could lead to the development of novel and effective JAK3 therapeutic targets for treating rheumatoid arthritis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hanine Hadni
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
2
|
Polimera SR, Ilangovan A, Subbaiah MAM. Examining the Scope of Deriving β-Aryl Enones from Enol Silanes as Ketone Equivalents via Pd(II)-Mediated Sequential Dehydrosilylation and Arylation. J Org Chem 2023. [PMID: 37192466 DOI: 10.1021/acs.joc.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Silyl enol ethers were examined as a masked source of saturated ketones to derive β-aryl enones and their derivatives by dehydrosilylation to generate enones in situ and subsequent oxidative arylation with arylboronic acids as transmetallation coupling partners using relayed Pd(II) catalysis in one pot under base-free conditions. Oxygen was found to be an efficient and green oxidant to enable both dehydrosilylation of enol silanes and arylation. Additionally, arylation conditions can be custom-designed to take advantage of aryl halides as an alternative source of arylating agents. The preparative scope was investigated with 35 examples (up to 95% yield), and mechanistic studies implied a cationic Pd(II)-based catalytic system.
Collapse
Affiliation(s)
- Subba Rao Polimera
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India
| |
Collapse
|
3
|
Park E, Lee SJ, Moon H, Park J, Jeon H, Hwang JS, Hwang H, Hong KB, Han SH, Choi S, Kang S. Discovery and Biological Evaluation of N-Methyl-pyrrolo[2,3- b]pyridine-5-carboxamide Derivatives as JAK1-Selective Inhibitors. J Med Chem 2021; 64:958-979. [PMID: 33428419 DOI: 10.1021/acs.jmedchem.0c01026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Janus kinase 1 (JAK1) plays a key role in most cytokine-mediated inflammatory and autoimmune responses through JAK/STAT signaling; thus, JAK1 inhibition is a promising therapeutic strategy for several diseases. Analysis of the binding modes of current JAK inhibitors to JAK isoforms allowed the design of N-alkyl-substituted 1-H-pyrrolo[2,3-b] pyridine carboxamide as a JAK1-selective scaffold, and the synthesis of various methyl amide derivatives provided 4-((cis-1-(4-chlorobenzyl)-2-methylpiperidin-4-yl)amino)-N-methyl-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (31g) as a potent JAK1-selective inhibitor. In particular, the (S,S)-enantiomer of 31g (38a) exhibited excellent potency for JAK1 and selectivity over JAK2, JAK3, and TYK2. On investigating the effect of 31g on hepatic fibrosis, it was found that it reduces the proliferation and fibrogenic gene expression of TGF-β-induced hepatic stellate cells (HSCs). Specifically, 31g significantly inhibited TGF-β-induced migration of HSCs at 0.25 μM in wound-healing assays.
Collapse
Affiliation(s)
- Eunsun Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Heegyum Moon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jongmi Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyeonho Jeon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ji Sun Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ki Bum Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Seung-Hee Han
- Central Research Laboratory, KOREA PHARMA Co. Ltd, jeyakgongdan 3-gil, Hyangnam-eup, Hwaseong-si, Gyeonggi-do 18622, Republic of Korea
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Bahekar R, Panchal N, Soman S, Desai J, Patel D, Argade A, Gite A, Gite S, Patel B, Kumar J, S S, Patel H, Sundar R, Chatterjee A, Mahapatra J, Patel H, Ghoshdastidar K, Bandyopadhyay D, Desai RC. Discovery of diaminopyrimidine-carboxamide derivatives as JAK3 inhibitors. Bioorg Chem 2020; 99:103851. [PMID: 32334196 DOI: 10.1016/j.bioorg.2020.103851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Selective inhibition of janus kinase (JAK) has been identified as an important strategy for the treatment of autoimmune disorders. Optimization at the C2 and C4-positions of pyrimidine ring of Cerdulatinib led to the discovery of a potent and orally bioavailable 2,4-diaminopyrimidine-5-carboxamide based JAK3 selective inhibitor (11i). A cellular selectivity study further confirmed that 11i preferentially inhibits JAK3 over JAK1, in JAK/STAT signaling pathway. Compound 11i showed good anti-arthritic activity, which could be correlated with its improved oral bioavailability. In the repeat dose acute toxicity study, 11i showed no adverse changes related to gross pathology and clinical signs, indicating that the new class JAK3 selective inhibitor could be viable therapeutic option for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Rajesh Bahekar
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India.
| | - Nandini Panchal
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India; Department of Chemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390002, India
| | - Shubhangi Soman
- Department of Chemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390002, India
| | - Jigar Desai
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Dipam Patel
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Anil Argade
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Archana Gite
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Sanjay Gite
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Bhaumin Patel
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Jeevan Kumar
- Department of Bioinformatics, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Sachchidanand S
- Department of Bioinformatics, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Harilal Patel
- Department of Pharmacology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Rajesh Sundar
- Department of Pharmacology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Abhijit Chatterjee
- Department of Pharmacology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Jogeswar Mahapatra
- Department of Pharmacology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Hoshang Patel
- Department of Cell Biology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Krishnarup Ghoshdastidar
- Department of Cell Biology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Debdutta Bandyopadhyay
- Department of Cell Biology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Ranjit C Desai
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| |
Collapse
|
5
|
Silva DR, Zeoly LA, Cormanich RA, Guerra CF, Freitas MP. Evaluation of the Alicyclic Gauche
Effect in 2-Fluorocyclohexanone Analogs: a Combined NMR and DFT Study. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniela Rodrigues Silva
- Departamento de Química; Universidade Federal de Lavras; 37200-900 Lavras - MG Brazil
- Theoretical Chemistry; Department of Chemistry and Pharmaceutical Sciences; AIMMS, Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Lucas A. Zeoly
- Chemistry Institute; University of Campinas; 13083- 970 Campinas - SP Brazil
| | | | - Célia Fonseca Guerra
- Theoretical Chemistry; Department of Chemistry and Pharmaceutical Sciences; AIMMS, Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Leiden Institute of Chemistry; Gorlaeus Laboratories; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Matheus P. Freitas
- Departamento de Química; Universidade Federal de Lavras; 37200-900 Lavras - MG Brazil
| |
Collapse
|
6
|
Cavalluzzi MM, Imbrici P, Gualdani R, Stefanachi A, Mangiatordi GF, Lentini G, Nicolotti O. Human ether-à-go-go-related potassium channel: exploring SAR to improve drug design. Drug Discov Today 2019; 25:344-366. [PMID: 31756511 DOI: 10.1016/j.drudis.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
hERG is best known as a primary anti-target, the inhibition of which is responsible for serious side effects. A renewed interest in hERG as a desired target, especially in oncology, was sparked because of its role in cellular proliferation and apoptosis. In this study, we survey the most recent advances regarding hERG by focusing on SAR in the attempt to elucidate, at a molecular level, off-target and on-target actions of potential hERG binders, which are highly promiscuous and largely varying in structure. Understanding the rationale behind hERG interactions and the molecular determinants of hERG activity is a real challenge and comprehension of this is of the utmost importance to prioritize compounds in early stages of drug discovery and to minimize cardiotoxicity attrition in preclinical and clinical studies.
Collapse
Affiliation(s)
- Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Paola Imbrici
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Angela Stefanachi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | | | - Giovanni Lentini
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
7
|
Musumeci F, Greco C, Giacchello I, Fallacara AL, Ibrahim MM, Grossi G, Brullo C, Schenone S. An Update on JAK Inhibitors. Curr Med Chem 2019; 26:1806-1832. [PMID: 29589523 DOI: 10.2174/0929867325666180327093502] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 02/03/2023]
Abstract
Janus kinases (JAKs) are a family of non-receptor tyrosine kinases, composed by four members, JAK1, JAK2, JAK3 and TYK2. JAKs are involved in different inflammatory and autoimmune diseases, as well as in malignancies, through the activation of the JAK/STAT signalling pathway. Furthermore, the V617F mutation in JAK2 was identified in patients affected by myeloproliferative neoplasms. This knowledge prompted researchers from academia and pharmaceutical companies to investigate this field in order to discover small molecule JAK inhibitors. These efforts recently afforded to the market approval of four JAK inhibitors. Despite the fact that all these drugs are pyrrolo[2,3-d]pyrimidine derivatives, many compounds endowed with different heterocyclic scaffolds have been reported in the literature as selective or multi-JAK inhibitors, and a number of them is currently being evaluated in clinical trials. In this review we will report many representative compounds that have been published in articles or patents in the last five years (period 2013-2017). The inhibitors will be classified on the basis of their chemical structure, focusing, when possible, on their structure activity relationships, selectivity and biological activity. For every class of derivatives, compounds disclosed before 2013 that have entered clinical trials will also be briefly reported, to underline the importance of a particular chemical scaffold in the search for new inhibitors.
Collapse
Affiliation(s)
- Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Chiara Greco
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Ilaria Giacchello
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Anna Lucia Fallacara
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Munjed M Ibrahim
- College of Pharmacy, Department of Pharmaceutical Chemistry, Umm Al-Qura University, 21955-Makkah Al- Mukarramah, Saudi Arabia
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
8
|
Qiu Q, Feng Q, Tan X, Guo M. JAK3-selective inhibitor peficitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Pharmacol 2019; 12:547-554. [PMID: 31059310 DOI: 10.1080/17512433.2019.1615443] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease characterized by synovitis as well as symmetric and destructive arthropathy. Although several disease modified antirheumatic-drugs (DMARDs) have widely used in clinical practice, certain patients are nonresponsive to or cannot take such medications due to adverse reactions. It is evident that Janus kinase (JAK) inhibitors have the potential to provide a significant breakthrough in the treatment of RA. These potent, orally administered, JAK inhibitors simplify the treatment options for patients. Areas covered: We discuss the pharmacodynamics, pharmacokinetics, efficacy, and safety of peficitinib for the treatment of RA. Expert opinion: Peficitinib is a novel JAK3 inhibitor potently inhibiting JAK3 enzymatic activity and JAK1/3-mediated cell proliferation. Its selectivity for JAK family kinases is similar to that of tofacitinib, but slightly less potent for JAK2. It is currently being evaluated by the FDA to treat adult patients with moderately to severely active RA who show inadequate response to or are intolerant of methotrexate. It can be used either as monotherapy or combination therapy with methotrexate, or other DMARDs. However, we think that more cautious consideration and measurement for adverse events are needed, after considering the safety results of ongoing clinical studies of peficitinib.
Collapse
Affiliation(s)
- Qian Qiu
- a Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Qilin Feng
- a Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Xueying Tan
- b College of pharmacy , Zhejiang Pharmaceutical College , Ningbo , China
| | - Mingxing Guo
- c Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
9
|
Chernykh AV, Melnykov KP, Tolmacheva NA, Kondratov IS, Radchenko DS, Daniliuc CG, Volochnyuk DM, Ryabukhin SV, Kuchkovska YO, Grygorenko OO. Last of the gem-Difluorocycloalkanes: Synthesis and Characterization of 2,2-Difluorocyclobutyl-Substituted Building Blocks. J Org Chem 2019; 84:8487-8496. [PMID: 30990713 DOI: 10.1021/acs.joc.9b00719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Kostiantyn P. Melnykov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | | | - Ivan S. Kondratov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine, Murmanska Street 1, Kyiv 02660, Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Dmitriy M. Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine
| | - Sergey V. Ryabukhin
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
10
|
Are peptides a solution for the treatment of hyperactivated JAK3 pathways? Inflammopharmacology 2019; 27:433-452. [PMID: 30929155 DOI: 10.1007/s10787-019-00589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
Abstract
While the inactivation mutations that eliminate JAK3 function lead to the immunological disorders such as severe combined immunodeficiency, activation mutations, causing constitutive JAK3 signaling, are known to trigger various types of cancer or are responsible for autoimmune diseases, such as rheumatoid arthritis, psoriasis, or inflammatory bowel diseases. Treatment of hyperactivated JAK3 is still an obstacle, due to different sensibility of mutation types to conventional drugs and unwanted side effects, because these drugs are not absolutely specific for JAK3, thus inhibiting other members of the JAK family, too. Lack of information, in which way sole inhibition of JAK3 is necessary for elimination of the disease, calls for the development of isoform-specific JAK3 inhibitors. Beside this strategy, up to date peptides are a rising alternative as chemo- or immunotherapeutics, but still sparsely represented in drug development and clinical trials. Beyond a possible direct inhibition function, crossing the cancer cell membrane and interfering in disease-causing pathways or triggering apoptosis, peptides could be used in future as adjunct remedies to potentialize traditional therapy and preserve non-affected cells. To discuss such feasible topics, this review deals with the knowledge about the structure-function of JAK3 and the actual state-of-the-art of isoform-specific inhibitor development, as well as the function of currently approved drugs or those currently being tested in clinical trials. Furthermore, several strategies for the application of peptide-based drugs for cancer therapy and the physicochemical and structural relations to peptide efficacy are discussed, and an overview of peptide sequences, which were qualified for clinical trials, is given.
Collapse
|
11
|
Rajasekharan SK, Lee JH, Ravichandran V, Kim JC, Park JG, Lee J. Nematicidal and insecticidal activities of halogenated indoles. Sci Rep 2019; 9:2010. [PMID: 30765810 PMCID: PMC6375993 DOI: 10.1038/s41598-019-38561-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
Parasite death via ion channel activations is the hallmark of anthelmintic and antiparasitic drugs. Glutamate gated chloride channel (GluCl) is a prominent targets for drug selection and design in parasitology. We report several iodine-fluorine based lead activators of GluCl by computational studies and structure-activity relationship analysis. 5-Fluoro-4-iodo-1H-pyrrolo [2, 3-b] pyridine and 5-iodoindole were bioactive hits that displayed in vitro anthelmintic and insecticidal activities against Bursaphelenchus xylophilus, Meloidogyne incognita, and Tenebrio molitor. Two important findings stood out: (i) 5F4IPP induced parasite death, and interacted proficiently with Gln219 amino acid of pentameric GluCl in docking analysis, and (ii) 5-iodoindole appeared to act by forming giant vacuoles in nematodes, which led to a form of non-apoptotic death known as methuosis. The study suggests halogenated-indoles and 1H-pyrrolo [2, 3-b] pyridine derivatives be regarded potential biocides for plant-parasitic nematodes and insects, and warrants further research on the mode of actions, and field investigations.
Collapse
Affiliation(s)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Vinothkannan Ravichandran
- Shandong University-Helmholtz Institute of Biotechnology, School of Life Science, Shandong University, Jinan, P. R. China
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, 37668, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
12
|
Luo XY, Zhou H, Wang SY, Xiong J, Mo CF, Guo HJ, Wang YT, Yang SX, Li LM, Zou Q, Liu Y. A benzoxazole derivative PO-296 inhibits T lymphocyte proliferation by the JAK3/STAT5 signal pathway. J Cell Biochem 2018; 120:9193-9202. [PMID: 30506723 DOI: 10.1002/jcb.28195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
Immunosuppressants have shown striking achievements in treating autoimmune diseases in recent years. It is urgent to develop more immunosuppressants to provide more options for patients. PO-296 [2-(6-chlorobenzo[d]oxazol-2-yl)-4,5,6,7-tetrahydro-2H-indazol-3-ol] was identified as a novel benzoxazole derivative. We observed that it exhibits an obvious immunosuppressive activity to T lymphocytes. PO-296 significantly inhibited the proliferation of activated human T lymphocyte without cytotoxicity. Moreover, PO-296 did not affect the expression of cluster of differentiation (CD)-25 or CD69 but induced T lymphocyte cycle arrest in the G0/G1 phase. Furthermore, PO-296 inhibited interleukin (IL)-6, IL-17, and interferon gamma expression but had no effect on IL-2, IL-4, or IL-10. Yet, importantly, PO-296 inhibited the phosphorylation of signal transducer and activator of transcription 5 (STAT5), increased the phosphorylation of p70S6K, but did not affect the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mitogen-activated protein kinase pathway. In conclusion, these findings indicate that PO-296 inhibits human activated T-lymphocyte proliferation by affecting the janus kinase 3 (JAK3)/STAT5 pathway. PO-296 possesses a potential lead compound for the design and development of new immunosuppressants for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xing-Yan Luo
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Zhou
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China.,Development of Radiology, The Second People's Hospital of Shanwei City, Guangzhou, Shanwei, China
| | - Si-Yu Wang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jing Xiong
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun-Fen Mo
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hui-Jie Guo
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan-Tang Wang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shu-Xia Yang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Li-Mei Li
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiang Zou
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yang Liu
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China.,Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Meanwell NA. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J Med Chem 2018; 61:5822-5880. [PMID: 29400967 DOI: 10.1021/acs.jmedchem.7b01788] [Citation(s) in RCA: 1433] [Impact Index Per Article: 204.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development P.O. Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
14
|
Discovery of tricyclic dipyrrolopyridine derivatives as novel JAK inhibitors. Bioorg Med Chem 2017; 25:5311-5326. [PMID: 28789911 DOI: 10.1016/j.bmc.2017.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Abstract
Janus kinases (JAKs) play a crucial role in cytokine mediated signal transduction. JAK inhibitors have emerged as effective immunomodulative agents for the prevention of transplant rejection. We previously reported that the tricyclic imidazo-pyrrolopyridinone 2 is a potent JAK inhibitor; however, it had poor oral absorption due to low membrane permeability. Here, we report the structural modification of compound 2 into the tricyclic dipyrrolopyridine 18a focusing on reduction of polar surface area (PSA), which exhibits potent in vitro activity, improved membrane permeability and good oral bioavailability. Compound 18a showed efficacy in rat heterotopic cardiac transplants model.
Collapse
|
15
|
Forster M, Gehringer M, Laufer SA. Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorg Med Chem Lett 2017; 27:4229-4237. [PMID: 28844493 DOI: 10.1016/j.bmcl.2017.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) are a family of four cytosolic protein kinases with a high degree of structural similarity. Due to its very restricted role in immune regulation, JAK3 was promoted as an excellent target for immunosuppression for more than a decade, but clinical validation of this concept is still elusive. During the last years, speculation arose that kinase activity of JAK1, which cooperates with JAK3 in cytokine receptor signaling, may have a dominant role over the one of JAK3. Until recently, however, this issue could not be appropriately addressed due to a lack of highly isoform-selective tool compounds. With the recent resurgence of covalent drugs, targeting of a specific cysteine that distinguishes JAK3 from other JAK family members became an attractive design option. By applying this strategy, a set of JAK3 inhibitors with excellent selectivity against other JAK isoforms and the kinome was developed during the last three years and used to decipher JAK3-dependent signaling. The data obtained with these tool compounds demonstrates that selective JAK3 inhibition is sufficient to block downstream signaling. Since one of these inhibitors is currently under evaluation in phase II clinical studies against several inflammatory disorders, it will soon become apparent whether selective JAK3 inhibition translates into clinical efficacy.
Collapse
Affiliation(s)
- Michael Forster
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
16
|
Nakajima Y, Aoyama N, Takahashi F, Sasaki H, Hatanaka K, Moritomo A, Inami M, Ito M, Nakamura K, Nakamori F, Inoue T, Shirakami S. Design, synthesis, and evaluation of 4,6-diaminonicotinamide derivatives as novel and potent immunomodulators targeting JAK3. Bioorg Med Chem 2016; 24:4711-4722. [DOI: 10.1016/j.bmc.2016.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
|