1
|
Chen G, Bai J, Wu X, Huo X, Li Y, Lei P, Ma Z. Amphiphilic amidines as potential plasmic membrane-targeting antifungal agents: synthesis, bio-activities and QSAR. PEST MANAGEMENT SCIENCE 2024; 80:5266-5276. [PMID: 38877543 DOI: 10.1002/ps.8253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Cationic antimicrobial peptides (AMPs) possess broad-spectrum biological activities with less inclination to inducing antibiotic resistance. Herein a battery of amphiphilic amidines were designed by mimicking the characteristics of AMPs. The antifungal activities and the effects to the hyphal morphology and membrane permeability were investigated. RESULTS The results indicated the inhibitory rates of ten compounds were over 80% to Botrytis cinerea and ten compounds over 90% to Valsa mali Miyabe et Yamada at 50 mg L-1. The half maximal effective concentration (EC50) values of compound 5g and 6g to V. mali were 1.21 and 1.90 mg L-1 respectively. The protective rate against apple canker of compound 5g reached 93.4% at 100 mg L-1 on twigs, superior to carbendazim (53.3%). When treated with 5g, the cell membrane permeability and leakage of content of V. mali increased, accompanied with the decrease of superoxide dismutase (SOD) and catalase (CAT) level. Concurrently, the mycelial hyphae contracted, wrinkled, and collapsed, providing evidence of membrane perturbation. A three-dimensional quantitative structure-activity relationship (3D-QSAR) between the topic compounds and the EC50 to V. mali was established showing good predictability (r2 = 0.971). CONCLUSION Amphiphilic amidines can acquire antifungal activities by acting on the plasmic membrane. Compound 5g could be a promising lead in discovering novel fungicidal candidates. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyou Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jing Bai
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyan Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyi Huo
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yongqiang Li
- College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Zainal Abidin A, Norrrahim MNF, Mohamed Shakrin NNS, Ibrahim B, Abdullah N, Abdul Rashid JI, Mohd Kasim NA, Ahmad Shah NA. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024; 10:e32010. [PMID: 39170404 PMCID: PMC11336351 DOI: 10.1016/j.heliyon.2024.e32010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Collapse
Affiliation(s)
- Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norli Abdullah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Azilah Mohd Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Wang X, Jin X, Xie Z, Zhang H, Liu T, Zheng H, Luan X, Sun Y, Fang W, Chang W, Lou H. Benzamidine Conjugation Converts Expelled Potential Active Agents into Antifungals against Drug-Resistant Fungi. J Med Chem 2023; 66:13684-13704. [PMID: 37787457 DOI: 10.1021/acs.jmedchem.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Fungal infections present a growing global public health concern, necessitating the development of novel antifungal drugs. However, many potential antifungals, particularly the expelled potential active agents (EPAAs), are often underestimated owing to their limitations in cellular entry or expulsion by efflux pumps. Herein, we identified 68 EPAAs out of 2322 candidates with activity against a Candida albicans efflux pump-deficient strain and no inhibitory activity against the wild-type strain. Using a novel conjugation strategy involving benzamidine (BM) as a mitochondrion-targeting warhead, we successfully converted EPAAs into potent antifungals against various urgent-threat azole-resistantCandida strains. Among the obtained EPAA-BM conjugates, IS-2-BM (11) exhibited excellent antifungal activities and induced negligible drug resistance. Furthermore, IS-2-BM prevented biofilm formation, eradicated mature biofilms, and exhibited excellent therapeutic effects in a murine model of systemic candidiasis. These findings provide a promising strategy for increasing the possibilities of discovering more antifungals.
Collapse
Affiliation(s)
- Xue Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461002, China
| | - Hongyang Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Tiantian Liu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yan Sun
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Ptiček L, Hok L, Grbčić P, Topić F, Cetina M, Rissanen K, Pavelić SK, Vianello R, Racané L. Amidino substituted 2-aminophenols: biologically important building blocks for the amidino-functionalization of 2-substituted benzoxazoles. Org Biomol Chem 2021; 19:2784-2793. [PMID: 33704342 DOI: 10.1039/d1ob00235j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike the closely related and widely investigated amidino-substituted benzimidazoles and benzothiazoles with a range of demonstrated biological activities, the matching benzoxazole analogues still remain a largely understudied and not systematically evaluated class of compounds. To address this challenge, we utilized the Pinner reaction to convert isomeric cyano-substituted 2-aminophenols into their amidine derivatives, which were isolated as hydrochlorides and/or zwitterions, and whose structure was confirmed by single crystal X-ray diffraction. The key step during the Pinner synthesis of the crucial carboximidate intermediates was characterized through mechanistic DFT calculations, with the obtained kinetic and thermodynamic parameters indicating full agreement with the experimental observations. The obtained amidines were subjected to a condensation reaction with aryl carboxylic acids that allowed the synthesis of a new library of 5- and 6-amidino substituted 2-arylbenzoxazoles. Their antiproliferative features against four human tumour cell lines (SW620, HepG2, CFPAC-1, HeLa) revealed sub-micromolar activities on SW620 for several cyclic amidino 2-naphthyl benzoxazoles, thus demonstrating the usefulness of the proposed synthetic strategy and promoting amidino substituted 2-aminophenols as important building blocks towards biologically active systems.
Collapse
Affiliation(s)
- Lucija Ptiček
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Perontsis S, Geromichalos GD, Pekou A, Hatzidimitriou AG, Pantazaki A, Fylaktakidou KC, Psomas G. Structure and biological evaluation of pyridine-2-carboxamidine copper(II) complex resulting from N′-(4-nitrophenylsulfonyloxy)2-pyridine-carboxamidoxime. J Inorg Biochem 2020; 208:111085. [DOI: 10.1016/j.jinorgbio.2020.111085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
6
|
Chen X, Liu Y, Wang C, Hu X, Wu Y, Zhang Y, Bian C, You X, Hu L. Synthesis and in vitro activity of asymmetric indole-based bisamidine compounds against Gram-positive and Gram-negative pathogens. Bioorg Med Chem Lett 2020; 30:126887. [DOI: 10.1016/j.bmcl.2019.126887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
|
7
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
8
|
Dascălu A, Bîcu E, Shova S, Lipka E, Rigo B, Billamboz M, Ghinet A. Insights on the Chemical Behavior of Ethyl Cyanoformate: Dipolarophile, Cyano or Ethoxycarbonyl Source. ChemistrySelect 2019. [DOI: 10.1002/slct.201903114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anca‐Elena Dascălu
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
- ‘Al. I. Cuza' University of IasiFaculty of Chemistry, Bd. Carol I, nr. 11 700506 Iasi Romania
| | - Elena Bîcu
- ‘Al. I. Cuza' University of IasiFaculty of Chemistry, Bd. Carol I, nr. 11 700506 Iasi Romania
| | - Segiu Shova
- ‘Petru Poni' Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley 700487 Iasi Romania
| | - Emmanuelle Lipka
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Faculté des Sciences Pharmaceutiques et Biologiques de Lille F-59006 Lille Cedex France
| | - Benoît Rigo
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
| | - Muriel Billamboz
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
| | - Alina Ghinet
- Inserm U995, LIRICUniversité de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place Verdun F-59045 Lille Cedex France
- Hautes Etudes d'Ingénieur (HEI)Yncréa Hauts-de-France, UCLilleLaboratoire de Pharmacochimie, 13 rue de Toul F-59046 Lille France
- ‘Al. I. Cuza' University of IasiFaculty of Chemistry, Bd. Carol I, nr. 11 700506 Iasi Romania
| |
Collapse
|
9
|
Castiñeira Reis M, Marín-Luna M, Silva López C, Faza ON. Mechanism of the Molybdenum-Mediated Cadogan Reaction. ACS OMEGA 2018; 3:7019-7026. [PMID: 31458865 PMCID: PMC6644586 DOI: 10.1021/acsomega.8b01278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 05/24/2023]
Abstract
Oxygen atom transfer reactions are receiving increasing attention because they bring about paramount transformations in the current biomass processing industry. Significant efforts have therefore been made lately in the development of efficient and scalable methods to deoxygenate organic compounds. One recent alternative involves the modification of the Cadogan reaction in which a Mo(VI) core catalyzes the reduction of o-nitrostyrene derivatives to indoles in the presence of PPh3. We have used density functional theory calculations to perform a comprehensive mechanistic study on this transformation, in which we find two clearly defined stages: an associative path from the nitro to the nitroso compound, characterized by the reduction of the catalyst in the first step, and a peculiar mechanism involving oxazaphosphiridine and nitrene intermediates leading to an indole product, where the metal catalyst does not participate.
Collapse
Affiliation(s)
- Marta Castiñeira Reis
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Marín-Luna
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Olalla Nieto Faza
- Departamento
de Química Orgánica, Universidade de Vigo, Campus As Lagoas, 32004 Orense, Spain
| |
Collapse
|
10
|
Liu Y, Hu X, Wu Y, Zhang W, Chen X, You X, Hu L. Synthesis and structure-activity relationship of novel bisindole amidines active against MDR Gram-positive and Gram-negative bacteria. Eur J Med Chem 2018; 150:771-782. [PMID: 29604581 DOI: 10.1016/j.ejmech.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
A series of novel diamidines with N-substituents on an amidine N-atom were synthesized and evaluated for their cytotoxicity and in vitro antibacterial activity against a range of Gram-positive and Gram-negative bacterial strains. Based on structure-activity relationship, N-substituents with a branched chain and a shorter carbon chain on the amidine N-atom exhibited more promising activity against Gram-negative and MDR-Gram-positive bacteria; compounds 5c and 5i were the most powerful candidate compounds. Compound 5c showed greater efficacy than levofloxacin against most drug-resistant Gram-positive bacteria and exhibited broad-spectrum antibacterial activity against Gram-negative bacteria, with MIC values in the range of 2-16 μg/mL. Slightly more potent antibacterial activity against Klebsiella pneumoniae, Acinetobacter calcoaceticus, Enterobacter cloacae, and Proteus mirabilis was observed for 5i in comparison with 5c. Compound 5i also showed remarkable antibacterial activity against NDM-1-producing Gram-negative bacteria, with MIC values in the range of 2-4 μg/mL, and was superior to the reference drugs meropenem and levofloxacin. Effective antibacterial activity of 5i was also shown in vivo in a mouse model of Staphylococcus aureus MRSA strain, with an ED50values of 2.62 mg/kg.
Collapse
Affiliation(s)
- Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Weixing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| |
Collapse
|
11
|
Modification of Bischler-Möhlau indole derivatives through palladium catalyzed Suzuki reaction as effective cholinesterase inhibitors, their kinetic and molecular docking studies. Bioorg Chem 2018; 76:166-176. [DOI: 10.1016/j.bioorg.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022]
|
12
|
Chen X, Hu X, Wu Y, Liu Y, Bian C, Nie T, You X, Hu L. Synthesis and in vitro activity of dicationic indolyl diphenyl ethers as novel potent antibiotic agents against drug-resistant bacteria. Bioorg Med Chem Lett 2017; 27:841-844. [DOI: 10.1016/j.bmcl.2017.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
|
13
|
DNA Targeting as a Likely Mechanism Underlying the Antibacterial Activity of Synthetic Bis-Indole Antibiotics. Antimicrob Agents Chemother 2016; 60:7067-7076. [PMID: 27620482 DOI: 10.1128/aac.00309-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023] Open
Abstract
We previously reported the synthesis and biological activity of a series of cationic bis-indoles with potent, broad-spectrum antibacterial properties. Here, we describe mechanism of action studies to test the hypothesis that these compounds bind to DNA and that this target plays an important role in their antibacterial outcome. The results reported here indicate that the bis-indoles bind selectively to DNA at A/T-rich sites, which is correlated with the inhibition of DNA and RNA synthesis in representative Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) organisms. Further, exposure of E. coli and S. aureus to representative bis-indoles resulted in induction of the DNA damage-inducible SOS response. In addition, the bis-indoles were found to be potent inhibitors of cell wall biosynthesis; however, they do not induce the cell wall stress stimulon in S. aureus, suggesting that this pathway is inhibited by an indirect mechanism. In light of these findings, the most likely basis for the observed activities of these compounds is their ability to bind to the minor groove of DNA, resulting in the inhibition of DNA and RNA synthesis and other secondary effects.
Collapse
|
14
|
Xu G, Mao S, Mao L, Jiang Y, Zhang P, Li W. Design, synthesis, and antifungal evaluation of novel 1,4-disubstituted 1,2,3-triazoles containing indole framework. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2016. [DOI: 10.1515/znb-2016-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In order to find novel bioactive compounds with significant antifungal activities, a series of novel 1,4-disubstituted 1,2,3-triazoles containing an indole ring via CuCl2/Zn-catalyzed Huisgen cycloaddition were designed, synthesized, and characterized. Antifungal activity against colletotrichum capsici and cotton physalospora pathogens of all the prepared compounds was evaluated, and the test results indicated that these compounds, especially 4g and 4h, showed significant inhibitory effects for fungi. All the synthesized compounds have been characterized by IR, NMR, and high-resolution mass spectra experiments. The preliminary structure activity relationship is also discussed in this paper.
Collapse
Affiliation(s)
- Guiqing Xu
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Shen Mao
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Longfei Mao
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Yuqin Jiang
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Peng Zhang
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Wei Li
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| |
Collapse
|
15
|
Sączewski F, Kornicka A, Balewski Ł. Imidazoline scaffold in medicinal chemistry: a patent review (2012–2015). Expert Opin Ther Pat 2016; 26:1031-48. [DOI: 10.1080/13543776.2016.1210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Xu G, Zhao J, Jiang Y, Zhang P, Li W. Design, Synthesis and Antifungal Activity of Novel Indole Derivatives Linked with the 1,2,3-Triazole Moiety via the CuAAC Click Reaction. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14597828245275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of novel indole derivatives linked with the 1,2,3-triazole moiety was designed, synthesised by the CuCl2/Zn-catalysed Huisgen cycloaddition and characterised. The antifungal activity of all the prepared compounds against Colletotrichum capsici and cotton Physalospora pathogens was evaluated and the results indicated that these compounds showed inhibitory effect for fungi and the inhibition ratio of the best was up to 83.3%. The preliminary structure–activity relationship is also discussed in this paper.
Collapse
Affiliation(s)
- Guiqing Xu
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Jinglin Zhao
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Yuqin Jiang
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Peng Zhang
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| | - Wei Li
- Henan Engineering Laboratory of Chemical Pharmaceuticals & Biomedical Materials, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P.R. China
| |
Collapse
|
17
|
Dias GG, Pinho PVB, Duarte HA, Resende JM, Rosa ABB, Correa JR, Neto BAD, da Silva Júnior EN. Fluorescent oxazoles from quinones for bioimaging applications. RSC Adv 2016. [DOI: 10.1039/c6ra14701a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This work describes a synthetic strategy for the syntheses of four new fluorescent excited state intramolecular proton transfer (ESIPT) prone oxazole derivatives synthesized from lapachol, a naturally occurring naphthoquinone isolated from the Tabebuia species (ipe tree).
Collapse
Affiliation(s)
- Gleiston G. Dias
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Pamella V. B. Pinho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Hélio A. Duarte
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Jarbas M. Resende
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Andressa B. B. Rosa
- Laboratory of Medicinal & Technological Chemistry
- Institute of Chemistry
- University of Brasilia
- Brasilia
- Brazil
| | - José R. Correa
- Laboratory of Medicinal & Technological Chemistry
- Institute of Chemistry
- University of Brasilia
- Brasilia
- Brazil
| | - Brenno A. D. Neto
- Laboratory of Medicinal & Technological Chemistry
- Institute of Chemistry
- University of Brasilia
- Brasilia
- Brazil
| | | |
Collapse
|