1
|
Sierant M, Szewczyk R, Dziergowska A, Krolewska-Golinska K, Szczupak P, Bernat P, Nawrot B. Studies on the Oxidative Damage of the Wobble 5-Methylcarboxymethyl-2-Thiouridine in the tRNA of Eukaryotic Cells with Disturbed Homeostasis of the Antioxidant System. Int J Mol Sci 2024; 25:12336. [PMID: 39596401 PMCID: PMC11594727 DOI: 10.3390/ijms252212336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine (U). Recently, we investigated whether the desulfuration of S2U is a natural process that also occurs in the cells exposed to oxidative stress or whether it only occurs in the test tube during chemical reactions with oxidants at high concentrations. Using different types of eukaryotic cells, such as baker's yeast, human cancer cells, or modified HEK293 cells with an impaired antioxidant system, we confirmed that 5-substituted 2-thiouridines are oxidatively desulfurized in the wobble position of the anticodon of some tRNAs. The quantitative LC-MS/MS-MRMhr analysis of the nucleoside mixtures obtained from the hydrolyzed tRNA revealed the presence of the desulfuration products of mcm5S2U: mcm5H2U and mcm5U modifications. We also observed some amounts of immature cm5S2U, cm5H2U and cm5U products, which may have indicated a disruption of the enzymatic modification pathway at the C5 position of 2-thiouridine. The observed process, which was triggered by oxidative stress in the living cells, could impair the function of 2-thiouridine-containing tRNAs and alter the translation of genetic information.
Collapse
Affiliation(s)
- Malgorzata Sierant
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | | | - Agnieszka Dziergowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Karolina Krolewska-Golinska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | - Patrycja Szczupak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| | - Przemyslaw Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (K.K.-G.); (P.S.); (B.N.)
| |
Collapse
|
2
|
Gummidi L, Kerru N, Adeniyi AA, Dhawan S, Singh P. Comparative experimental and DFT analysis of novel indole tagged [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Kulik K, Sadowska K, Wielgus E, Pacholczyk-Sienicka B, Sochacka E, Nawrot B. 2-Selenouridine, a Modified Nucleoside of Bacterial tRNAs, Its Reactivity in the Presence of Oxidizing and Reducing Reagents. Int J Mol Sci 2022; 23:ijms23147973. [PMID: 35887319 PMCID: PMC9325004 DOI: 10.3390/ijms23147973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The 5-substituted 2-selenouridines are natural components of the bacterial tRNA epitranscriptome. Because selenium-containing biomolecules are redox-active entities, the oxidation susceptibility of 2-selenouridine (Se2U) was studied in the presence of hydrogen peroxide under various conditions and compared with previously reported data for 2-thiouridine (S2U). It was found that Se2U is more susceptible to oxidation and converted in the first step to the corresponding diselenide (Se2U)2, an unstable intermediate that decomposes to uridine and selenium. The reversibility of the oxidized state of Se2U was demonstrated by the efficient reduction of (Se2U)2 to Se2U in the presence of common reducing agents. Thus, the 2-selenouridine component of tRNA may have antioxidant potential in cells because of its ability to react with both cellular ROS components and reducing agents. Interestingly, in the course of the reactions studied, we found that (Se2U)2 reacts with Se2U to form new ‘oligomeric nucleosides′ as linear and cyclic byproducts.
Collapse
Affiliation(s)
- Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
- Correspondence: ; Tel.: +48-(42)-68-03-215
| | - Klaudia Sadowska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
| |
Collapse
|
4
|
Biosynthesis and Degradation of Sulfur Modifications in tRNAs. Int J Mol Sci 2021; 22:ijms222111937. [PMID: 34769366 PMCID: PMC8584467 DOI: 10.3390/ijms222111937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Various sulfur-containing biomolecules include iron–sulfur clusters that act as cofactors for enzymes, sulfur-containing vitamins such as thiamin, and sulfur-modified nucleosides in RNA, in addition to methionine and cysteine in proteins. Sulfur-containing nucleosides are post-transcriptionally introduced into tRNA molecules, where they ensure precise codon recognition or stabilization of tRNA structure, thereby maintaining cellular proteome integrity. Modulating sulfur modification controls the translation efficiency of specific groups of genes, allowing organisms to adapt to specific environments. The biosynthesis of tRNA sulfur nucleosides involves elaborate ‘sulfur trafficking systems’ within cellular sulfur metabolism and ‘modification enzymes’ that incorporate sulfur atoms into tRNA. This review provides an up-to-date overview of advances in our knowledge of the mechanisms involved. It covers the functions, biosynthesis, and biodegradation of sulfur-containing nucleosides as well as the reaction mechanisms of biosynthetic enzymes catalyzed by the iron–sulfur clusters, and identification of enzymes involved in the de-modification of sulfur atoms of RNA. The mechanistic similarity of these opposite reactions is discussed. Mutations in genes related to these pathways can cause human diseases (e.g., cancer, diabetes, and mitochondrial diseases), emphasizing the importance of these pathways.
Collapse
|
5
|
Sun C, Limbach PA, Addepalli B. Characterization of UVA-Induced Alterations to Transfer RNA Sequences. Biomolecules 2020; 10:E1527. [PMID: 33171700 PMCID: PMC7695249 DOI: 10.3390/biom10111527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet radiation (UVR) adversely affects the integrity of DNA, RNA, and their nucleoside modifications. By employing liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based RNA modification mapping approaches, we identified the transfer RNA (tRNA) regions most vulnerable to photooxidation. Photooxidative damage to the anticodon and variable loop regions was consistently observed in both modified and unmodified sequences of tRNA upon UVA (λ 370 nm) exposure. The extent of oxidative damage measured in terms of oxidized guanosine, however, was higher in unmodified RNA compared to its modified version, suggesting an auxiliary role for nucleoside modifications. The type of oxidation product formed in the anticodon stem-loop region varied with the modification type, status, and whether the tRNA was inside or outside the cell during exposure. Oligonucleotide-based characterization of tRNA following UVA exposure also revealed the presence of novel photoproducts and stable intermediates not observed by nucleoside analysis alone. This approach provides sequence-specific information revealing potential hotspots for UVA-induced damage in tRNAs.
Collapse
Affiliation(s)
| | | | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA; (C.S.); (P.A.L.)
| |
Collapse
|
6
|
Gummidi L, Kerru N, Awolade P, Raza A, Sharma AK, Singh P. Synthesis of indole-tethered [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids as anti-pancreatic cancer agents. Bioorg Med Chem Lett 2020; 30:127544. [PMID: 32920143 DOI: 10.1016/j.bmcl.2020.127544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/07/2023]
Abstract
New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.
Collapse
Affiliation(s)
- Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
7
|
Different Oxidation Pathways of 2-Selenouracil and 2-Thiouracil, Natural Components of Transfer RNA. Int J Mol Sci 2020; 21:ijms21175956. [PMID: 32825053 PMCID: PMC7503825 DOI: 10.3390/ijms21175956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Sulfur- and selenium-modified uridines present in the wobble position of transfer RNAs (tRNAs) play an important role in the precise reading of genetic information and tuning of protein biosynthesis in all three domains of life. Both sulfur and selenium chalcogens functionally operate as key elements of biological molecules involved in the protection of cells against oxidative damage. In this work, 2-thiouracil (S2Ura) and 2-selenouracil (Se2Ura) were treated with hydrogen peroxide at 1:0.5, 1:1, and 1:10 molar ratios and at selected pH values ranging from 5 to 8. It was found that Se2Ura was more prone to oxidation than its sulfur analog, and if reacted with H2O2 at a 1:1 or lower molar ratio, it predominantly produced diselenide Ura-Se-Se-Ura, which spontaneously transformed to a previously unknown Se-containing two-ring compound. Its deselenation furnished the major reaction product, a structure not related to any known biological species. Under the same conditions, only a small amount of S2Ura was oxidized to form Ura-SO2H and uracil (Ura). In contrast, 10-fold excess hydrogen peroxide converted Se2Ura and S2Ura into corresponding Ura-SeOnH and Ura-SOnH intermediates, which decomposed with the release of selenium and sulfur oxide(s) to yield Ura as either a predominant or exclusive product, respectively. Our results confirmed significantly different oxidation pathways of 2-selenouracil and 2-thiouracil.
Collapse
|
8
|
C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3' Synonymous mRNA Codons. Int J Mol Sci 2020; 21:ijms21082882. [PMID: 32326096 PMCID: PMC7216251 DOI: 10.3390/ijms21082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
5-Substituted 2-selenouridines (R5Se2U) are post-transcriptional modifications present in the first anticodon position of transfer RNA. Their functional role in the regulation of gene expression is elusive. Here, we present efficient syntheses of 5-methylaminomethyl-2-selenouridine (1, mnm5Se2U), 5-carboxymethylaminomethyl-2-selenouridine (2, cmnm5Se2U), and Se2U (3) alongside the crystal structure of the latter nucleoside. By using pH-dependent potentiometric titration, pKa values for the N3H groups of 1–3 were assessed to be significantly lower compared to their 2-thio- and 2-oxo-congeners. At physiological conditions (pH 7.4), Se2-uridines 1 and 2 preferentially adopted the zwitterionic form (ZI, ca. 90%), with the positive charge located at the amino alkyl side chain and the negative charge at the Se2-N3-O4 edge. As shown by density functional theory (DFT) calculations, this ZI form efficiently bound to guanine, forming the so-called “new wobble base pair”, which was accepted by the ribosome architecture. These data suggest that the tRNA anticodons with wobble R5Se2Us may preferentially read the 5′-NNG-3′ synonymous codons, unlike their 2-thio- and 2-oxo-precursors, which preferentially read the 5′-NNA-3′ codons. Thus, the interplay between the levels of U-, S2U- and Se2U-tRNA may have a dominant role in the epitranscriptomic regulation of gene expression via reading of the synonymous 3′-A- and 3′-G-ending codons.
Collapse
|
9
|
Zhou Q, Vu Ngoc BT, Leszczynska G, Stigliani JL, Pratviel G. Oxidation of 5-methylaminomethyl uridine (mnm⁵U) by Oxone Leads to Aldonitrone Derivatives. Biomolecules 2018; 8:biom8040145. [PMID: 30441840 PMCID: PMC6315764 DOI: 10.3390/biom8040145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
Oxidative RNA damage is linked to cell dysfunction and diseases. The present work focuses on the in vitro oxidation of 5-methylaminomethyl uridine (mnm5U), which belongs to the numerous post-transcriptional modifications that are found in tRNA. The reaction of oxone with mnm5U in water at pH 7.5 leads to two aldonitrone derivatives. They form by two oxidation steps and one dehydration step. Therefore, the potential oxidation products of mnm5U in vivo may not be only aldonitrones, but also hydroxylamine and imine derivatives (which may be chemically more reactive). Irradiation of aldonitrone leads to unstable oxaziridine derivatives that are susceptible to isomerization to amide or to hydrolysis to aldehyde derivative.
Collapse
Affiliation(s)
- Qishun Zhou
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| | - Bao Tram Vu Ngoc
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Jean-Luc Stigliani
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| | - Geneviève Pratviel
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| |
Collapse
|
10
|
Sierant M, Kulik K, Sochacka E, Szewczyk R, Sobczak M, Nawrot B. Cytochrome c Catalyzes the Hydrogen Peroxide-Assisted Oxidative Desulfuration of 2-Thiouridines in Transfer RNAs. Chembiochem 2018; 19:687-695. [PMID: 29287127 DOI: 10.1002/cbic.201700692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/14/2022]
Abstract
The 5-substituted 2-thiouridines (R5S2Us) present in the first (wobble) position of the anticodon of transfer RNAs (tRNAs) contribute to accuracy in reading mRNA codons and tuning protein synthesis. Previously, we showed that, under oxidative stress conditions in vitro, R5S2Us were sensitive to hydrogen peroxide (H2 O2 ) and that their oxidative desulfuration produced 5-substituted uridines (R5Us) and 4-pyrimidinone nucleosides (R5H2Us) at a ratio that depended on the pH and an R5 substituent. Here, we demonstrate that the desulfuration of 2-thiouridines, either alone or within an RNA/tRNA chain, is catalyzed by cytochrome c (cyt c). Its kinetics are similar to those of Fenton-type catalytic 2-thiouridine (S2U) desulfuration. Cyt c/H2 O2 - and FeII -mediated reactions deliver predominantly 4-pyrimidinone nucleoside (H2U)-type products. The pathway of the cyt c/H2 O2 -peroxidase-mediated S2U→H2U transformation through uridine sulfenic (U-SOH), sulfinic (U-SO2 H), and sulfonic (U-SO3 H) intermediates is confirmed by LC-MS. The cyt c/H2 O2 -mediated oxidative damage of S2U-tRNA may have biological relevance through alteration of the cellular functions of transfer RNA.
Collapse
Affiliation(s)
- Małgorzata Sierant
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Rafal Szewczyk
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Milena Sobczak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| |
Collapse
|
11
|
Sochacka E, Lodyga-Chruscinska E, Pawlak J, Cypryk M, Bartos P, Ebenryter-Olbinska K, Leszczynska G, Nawrot B. C5-substituents of uridines and 2-thiouridines present at the wobble position of tRNA determine the formation of their keto-enol or zwitterionic forms - a factor important for accuracy of reading of guanosine at the 3΄-end of the mRNA codons. Nucleic Acids Res 2017; 45:4825-4836. [PMID: 28088758 PMCID: PMC5416851 DOI: 10.1093/nar/gkw1347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022] Open
Abstract
Modified nucleosides present in the wobble position of the tRNA anticodons regulate protein translation through tuning the reading of mRNA codons. Among 40 of such nucleosides, there are modified uridines containing either a sulfur atom at the C2 position and/or a substituent at the C5 position of the nucleobase ring. It is already evidenced that tRNAs with 2-thiouridines at the wobble position preferentially read NNA codons, while the reading mode of the NNG codons by R5U/R5S2U-containing anticodons is still elusive. For a series of 18 modified uridines and 2-thiouridines, we determined the pKa values and demonstrated that both modifying elements alter the electron density of the uracil ring and modulate the acidity of their N3H proton. In aqueous solutions at physiological pH the 2-thiouridines containing aminoalkyl C5-substituents are ionized in ca. 50%. The results, confirmed also by theoretical calculations, indicate that the preferential binding of the modified units bearing non-ionizable 5-substituents to guanosine in the NNG codons may obey the alternative C-G-like (Watson–Crick) mode, while binding of those bearing aminoalkyl C5-substituents (protonated under physiological conditions) and especially those with a sulfur atom at the C2 position, adopt a zwitterionic form and interact with guanosine via a ‘new wobble’ pattern.
Collapse
Affiliation(s)
- Elzbieta Sochacka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Lodyga-Chruscinska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Justyna Pawlak
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marek Cypryk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Paulina Bartos
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Katarzyna Ebenryter-Olbinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.,Department of Computer Modeling, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Barbara Nawrot
- Department of Computer Modeling, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
12
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
13
|
Leszczynska G, Sadowska K, Bartos P, Nawrot B, Sochacka E. S-Geranylated 2-Thiouridines of Bacterial tRNAs: Chemical Synthesis and Physicochemical Properties. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Grazyna Leszczynska
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| | - Klaudia Sadowska
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| | - Paulina Bartos
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| | - Barbara Nawrot
- Department of Bioorganic Chemistry; Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 90-363 Lodz Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| |
Collapse
|