1
|
Efimov IV, Kulikova LN, Miftyakhova AR, Matveeva MD, Voskressensky LG. Recent Advances for the Synthesis of N‐Unsubstituted Pyrroles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ilya V. Efimov
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Larisa N. Kulikova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Almira R. Miftyakhova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Maria D. Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Leninsky pr. 29 119991 Moscow Russia
| | - Leonid G. Voskressensky
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| |
Collapse
|
2
|
An aza-nucleoside, fragment-like inhibitor of the DNA repair enzyme alkyladenine glycosylase (AAG). Bioorg Med Chem 2020; 28:115507. [PMID: 32327352 DOI: 10.1016/j.bmc.2020.115507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 11/21/2022]
Abstract
The DNA repair enzyme AAG has been shown in mice to promote tissue necrosis in response to ischaemic reperfusion or treatment with alkylating agents. A chemical probe inhibitor is required for investigations of the biological mechanism causing this phenomenon and as a lead for drugs that are potentially protective against tissue damage from organ failure and transplantation, and alkylative chemotherapy. Herein, we describe the rationale behind the choice of arylmethylpyrrolidines as appropriate aza-nucleoside mimics for an inhibitor followed by their synthesis and the first use of a microplate-based assay for quantification of their inhibition of AAG. We finally report the discovery of an imidazol-4-ylmethylpyrrolidine as a fragment-sized, weak inhibitor of AAG.
Collapse
|
3
|
Harijan RK, Hoff O, Ducati RG, Firestone RS, Hirsch BM, Evans GB, Schramm VL, Tyler PC. Selective Inhibitors of Helicobacter pylori Methylthioadenosine Nucleosidase and Human Methylthioadenosine Phosphorylase. J Med Chem 2019; 62:3286-3296. [PMID: 30860833 PMCID: PMC6635953 DOI: 10.1021/acs.jmedchem.8b01642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase (MTAN) hydrolyzes adenine from its substrates to form S-methyl-5-thioribose and S-ribosyl-l-homocysteine. MTANs are involved in quorum sensing, menaquinone synthesis, and 5'-methylthioadenosine recycling to S-adenosylmethionine. Helicobacter pylori uses MTAN in its unusual menaquinone pathway, making H. pylori MTAN a target for antibiotic development. Human 5'-methylthioadenosine phosphorylase (MTAP), a reported anticancer target, catalyzes phosphorolysis of 5'-methylthioadenosine to salvage S-adenosylmethionine. Transition-state analogues designed for HpMTAN and MTAP show significant overlap in specificity. Fifteen unique transition-state analogues are described here and are used to explore inhibitor specificity. Several analogues of HpMTAN bind in the picomolar range while inhibiting human MTAP with orders of magnitude weaker affinity. Structural analysis of HpMTAN shows inhibitors extending through a hydrophobic channel to the protein surface. The more enclosed catalytic sites of human MTAP require the inhibitors to adopt a folded structure, displacing the phosphate nucleophile from the catalytic site.
Collapse
Affiliation(s)
- Rajesh K. Harijan
- Department of Biochemistry, Albert Einstein College
of Medicine, New York 10461, New York, United States
| | - Oskar Hoff
- Ferrier Research Institute, Victoria University of
Wellington, Wellington 5040, New Zealand
| | - Rodrigo G. Ducati
- Department of Biochemistry, Albert Einstein College
of Medicine, New York 10461, New York, United States
| | - Ross S. Firestone
- Department of Biochemistry, Albert Einstein College
of Medicine, New York 10461, New York, United States
| | - Brett M. Hirsch
- Department of Biochemistry, Albert Einstein College
of Medicine, New York 10461, New York, United States
| | - Gary B. Evans
- Ferrier Research Institute, Victoria University of
Wellington, Wellington 5040, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College
of Medicine, New York 10461, New York, United States
| | - Peter C. Tyler
- Ferrier Research Institute, Victoria University of
Wellington, Wellington 5040, New Zealand
| |
Collapse
|
4
|
Abstract
Advances in our understanding of the metabolism and molecular functions of polyamines and their alterations in cancer have led to resurgence in the interest of targeting polyamine metabolism as an anticancer strategy. Increasing knowledge of the interplay between polyamine metabolism and other cancer-driving pathways, including the PTEN-PI3K-mTOR complex 1 (mTORC1), WNT signalling and RAS pathways, suggests potential combination therapies that will have considerable clinical promise. Additionally, an expanding number of promising clinical trials with agents targeting polyamines for both therapy and prevention are ongoing. New insights into molecular mechanisms linking dysregulated polyamine catabolism and carcinogenesis suggest additional strategies that can be used for cancer prevention in at-risk individuals. In addition, polyamine blocking therapy, a strategy that combines the inhibition of polyamine biosynthesis with the simultaneous blockade of polyamine transport, can be more effective than therapies based on polyamine depletion alone and may involve an antitumour immune response. These findings open up new avenues of research into exploiting aberrant polyamine metabolism for anticancer therapy.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
5
|
Tumashov AA, Gruzdev DA, Vigorov AY, Musiyak VV, Chulakov EN, Levit GL, Krasnov VP, Charushin VN. Analysis of racemic conjugates of purine with heterocyclic amines by chiral high-performance liquid chromatography. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2279-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Ricard S, Gagnon A, Daoust B. Copper-Catalyzed β-Iodovinylation of Carbamates: Expedient Access to Highly Functionalized Vinyl-Carbamates. ChemistrySelect 2018. [DOI: 10.1002/slct.201800824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Simon Ricard
- Département de Chimie; Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal; Québec H3C 3P8 Canada
- Département de Chimie; Biochimie et Physique; Université du Québec à Trois-Rivières, Trois-Rivières; Québec G9 A 5H7 Canada
| | - Alexandre Gagnon
- Département de Chimie; Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal; Québec H3C 3P8 Canada
| | - Benoit Daoust
- Département de Chimie; Biochimie et Physique; Université du Québec à Trois-Rivières, Trois-Rivières; Québec G9 A 5H7 Canada
| |
Collapse
|
7
|
Harris LD, Harijan RK, Ducati RG, Evans GB, Hirsch BM, Schramm VL. Synthesis of bis-Phosphate Iminoaltritol Enantiomers and Structural Characterization with Adenine Phosphoribosyltransferase. ACS Chem Biol 2018; 13:152-160. [PMID: 29178779 DOI: 10.1021/acschembio.7b00601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoribosyl transferases (PRTs) are essential in nucleotide synthesis and salvage, amino acid, and vitamin synthesis. Transition state analysis of several PRTs has demonstrated ribocation-like transition states with a partial positive charge residing on the pentose ring. Core chemistry for synthesis of transition state analogues related to the 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) reactant of these enzymes could be developed by stereospecific placement of bis-phosphate groups on an iminoaltritol ring. Cationic character is provided by the imino group and the bis-phosphates anchor both the 1- and 5-phosphate binding sites. We provide a facile synthetic path to these molecules. Cyclic-nitrone redox methodology was applied to the stereocontrolled synthesis of three stereoisomers of a selectively monoprotected diol relevant to the synthesis of transition-state analogue inhibitors. These polyhydroxylated pyrrolidine natural product analogues were bis-phosphorylated to generate analogues of the ribocationic form of 5-phosphoribosyl 1-phosphate. A safe, high yielding synthesis of the key intermediate represents a new route to these transition state mimics. An enantiomeric pair of iminoaltritol bis-phosphates (L-DIAB and D-DIAB) was prepared and shown to display inhibition of Plasmodium falciparum orotate phosphoribosyltransferase and Saccharomyces cerevisiae adenine phosphoribosyltransferase (ScAPRT). Crystallographic inhibitor binding analysis of L- and D-DIAB bound to the catalytic sites of ScAPRT demonstrates accommodation of both enantiomers by altered ring geometry and bis-phosphate catalytic site contacts.
Collapse
Affiliation(s)
- Lawrence D. Harris
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
| | - Rajesh K. Harijan
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rodrigo G. Ducati
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary B. Evans
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Brett M. Hirsch
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L. Schramm
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
8
|
Namanja-Magliano HA, Evans GB, Harijan RK, Tyler PC, Schramm VL. Transition State Analogue Inhibitors of 5'-Deoxyadenosine/5'-Methylthioadenosine Nucleosidase from Mycobacterium tuberculosis. Biochemistry 2017; 56:5090-5098. [PMID: 28836767 DOI: 10.1021/acs.biochem.7b00576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mycobacterium tuberculosis 5'-deoxyadenosine/5'-methylthioadenosine nucleosidase (Rv0091) catalyzes the N-riboside hydrolysis of its substrates 5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5'-dAdo). 5'-dAdo is the preferred substrate, a product of radical S-adenosylmethionine-dependent enzyme reactions. Rv0091 is characterized by a ribocation-like transition state, with low N-ribosidic bond order, an N7-protonated adenine leaving group, and an activated but weakly bonded water nucleophile. DADMe-Immucillins incorporating 5'-substituents of the substrates 5'-dAdo and MTA were synthesized and characterized as inhibitors of Rv0091. 5'-Deoxy-DADMe-Immucillin-A was the most potent among the 5'-dAdo transition state analogues with a dissociation constant of 640 pM. Among the 5'-thio substituents, hexylthio-DADMe-Immucillin-A was the best inhibitor at 87 pM. The specificity of Rv0091 for the Immucillin transition state analogues differs from those of other bacterial homologues because of an altered hydrophobic tunnel accepting the 5'-substituents. Inhibitors of Rv0091 had weak cell growth effects on M. tuberculosis or Mycobacterium smegmatis but were lethal toward Helicobacter pylori, where the 5'-methylthioadenosine nucleosidase is essential in menaquinone biosynthesis. We propose that Rv0091 plays a role in 5'-deoxyadenosine recycling but is not essential for growth in these Mycobacteria.
Collapse
Affiliation(s)
- Hilda A Namanja-Magliano
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Gary B Evans
- The Ferrier Research Institute, Victoria University of Wellington , Lower Hutt, Wellington 5040, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Auckland, New Zealand
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington , Lower Hutt, Wellington 5040, New Zealand
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
9
|
Oligonucleotide transition state analogues of saporin L3. Eur J Med Chem 2016; 127:793-809. [PMID: 27823883 DOI: 10.1016/j.ejmech.2016.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022]
Abstract
Ribosome inactivating proteins (RIPs) are among the most toxic agents known. More than a dozen clinical trials against refractory cancers have been initiated using modified RIPs with impressive results. However, dose-limiting toxicity due to vascular leak syndrome limits success of the therapy. We have previously reported some tight-binding transition state analogues of Saporin L3 that mimic small oligonucleotide substrates in which the susceptible adenosine has been replaced by a 9-deazaadenyl hydroxypyrrolidinol derivative. They provide the first step in the development of rescue agents to prevent Saporin L3 toxicity on non-targeted cells. Here we report the synthesis, using solution phase chemistry, of these and a larger group of transition state analogues. They were tested for inhibition against Saporin L3 giving Ki values as low as 3.3 nM and indicating the structural requirements for inhibition.
Collapse
|