1
|
Maucort C, Vo DD, Aouad S, Charrat C, Azoulay S, Di Giorgio A, Duca M. Design and Implementation of Synthetic RNA Binders for the Inhibition of miR-21 Biogenesis. ACS Med Chem Lett 2021; 12:899-906. [PMID: 34141067 DOI: 10.1021/acsmedchemlett.0c00682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
Targeting RNAs using small molecules is an emerging field of medicinal chemistry and holds promise for the discovery of efficient tools for chemical biology. MicroRNAs are particularly interesting targets since they are involved in a number of pathologies such as cancers. Indeed, overexpressed microRNAs in cancer are oncogenic and various series of inhibitors of microRNAs biogenesis have been developed in recent years. Here, we describe the structure-based design of new efficient inhibitors of microRNA-21. Starting from a previously identified hit, we performed biochemical studies and molecular docking to design a new series of optimized conjugates of neomycin aminoglycoside with artificial nucleobases and amino acids. Investigation about the mode of action and the site of the interaction of the newly synthesized compounds allowed for the description of structure-activity relationships and the identification of the most important parameters for miR-21 inhibition.
Collapse
Affiliation(s)
- Chloé Maucort
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Duc Duy Vo
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Samy Aouad
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Coralie Charrat
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Stéphane Azoulay
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Audrey Di Giorgio
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| | - Maria Duca
- Université Côte d’Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 avenue Valrose, 06100 Nice, France
| |
Collapse
|
2
|
Aradi K, Di Giorgio A, Duca M. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry 2020; 26:12273-12309. [PMID: 32539167 DOI: 10.1002/chem.202002258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Indexed: 01/04/2023]
Abstract
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.
Collapse
Affiliation(s)
- Klara Aradi
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| |
Collapse
|
3
|
Martin C, De Piccoli S, Gaysinski M, Becquart C, Azoulay S, Di Giorgio A, Duca M. Unveiling RNA‐Binding Properties of Verapamil and Preparation of New Derivatives as Inhibitors of HIV‐1 Tat‐TAR Interaction. Chempluschem 2020. [DOI: 10.1002/cplu.201900650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Céline Martin
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Serena De Piccoli
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Marc Gaysinski
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Cécile Becquart
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Stéphane Azoulay
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Audrey Di Giorgio
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| | - Maria Duca
- Université Côte d'Azur Institute of Chemistry of Nice (ICN) 28 avenue Valrose 06100 Nice France
| |
Collapse
|
4
|
Garner AL, Lorenz DA, Sandoval J, Gallagher EE, Kerk SA, Kaur T, Menon A. Tetracyclines as Inhibitors of Pre-microRNA Maturation: A Disconnection between RNA Binding and Inhibition. ACS Med Chem Lett 2019; 10:816-821. [PMID: 31098005 DOI: 10.1021/acsmedchemlett.9b00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022] Open
Abstract
In a high-throughput screening campaign, we recently discovered the rRNA-binding tetracyclines, methacycline and meclocycline, as inhibitors of Dicer-mediated processing of microRNAs. Herein, we describe our biophysical and biochemical characterization of these compounds. Interestingly, although direct, albeit weak, binding to the pre-microRNA hairpins was observed, the inhibitory activity of these compounds was not due to RNA binding. Through additional biochemical and chemical studies, we revealed that metal chelation likely plays a principle role in their mechanism of inhibition. By exploring the activity of other known RNA-binding scaffolds, we identified additional disconnections between direct RNA interaction and inhibition of Dicer processing. Thus, the results presented within provide a valuable case study in the complexities of targeting RNA with small molecules, particularly with weak binding and potentially promiscuous scaffolds.
Collapse
|
5
|
Vo DD, Becquart C, Tran TPA, Di Giorgio A, Darfeuille F, Staedel C, Duca M. Building of neomycin-nucleobase-amino acid conjugates for the inhibition of oncogenic miRNAs biogenesis. Org Biomol Chem 2019; 16:6262-6274. [PMID: 30116813 DOI: 10.1039/c8ob01858h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers, thus being oncogenic. The inhibition of oncogenic miRNAs (defined as the blocking of miRNAs' production or function) would find application in the therapy of different types of cancer in which these miRNAs are implicated. In this work, we describe the design and synthesis of new small-molecule RNA ligands with the aim of inhibiting Dicer-mediated processing of oncogenic miRNAs. One of the synthesized compound (4b) composed of the aminoglycoside neomycin conjugated to an artificial nucleobase and to amino acid histidine is able to selectively decrease miR-372 levels in gastric adenocarcinoma (AGS) cells and to restore the expression of the target LATS2 protein. This activity led to the inhibition of proliferation of these cells. The study of the interactions of 4b with pre-miR-372 allowed for the elucidation of the molecular mechanism of the conjugate, thus leading to new perspectives for the design of future inhibitors.
Collapse
Affiliation(s)
- Duc Duy Vo
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Brustikova K, Sedlak D, Kubikova J, Skuta C, Solcova K, Malik R, Bartunek P, Svoboda P. Cell-Based Reporter System for High-Throughput Screening of MicroRNA Pathway Inhibitors and Its Limitations. Front Genet 2018. [PMID: 29535760 PMCID: PMC5835079 DOI: 10.3389/fgene.2018.00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNAs repressing gene expression. They contribute to many physiological processes and pathologies. Consequently, strategies for manipulation of the miRNA pathway are of interest as they could provide tools for experimental or therapeutic interventions. One of such tools could be small chemical compounds identified through high-throughput screening (HTS) with reporter assays. While a number of chemical compounds have been identified in such high-throughput screens, their application potential remains elusive. Here, we report our experience with cell-based HTS of a library of 12,816 chemical compounds to identify miRNA pathway modulators. We used human HeLa and mouse NIH 3T3 cell lines with stably integrated or transiently expressed luciferase reporters repressed by endogenous miR-30 and let-7 miRNAs and identified 163 putative miRNA inhibitors. We report that compounds relieving miRNA-mediated repression via stress induction are infrequent; we have found only two compounds that reproducibly induced stress granules and relieved miRNA-targeted reporter repression. However, we have found that this assay type readily yields non-specific (miRNA-independent) stimulators of luciferase reporter activity. Furthermore, our data provide partial support for previously published miRNA pathway modulators; the most notable intersections were found among anthracyclines, dopamine derivatives, flavones, and stilbenes. Altogether, our results underscore the importance of appropriate negative controls in development of small compound inhibitors of the miRNA pathway. This particularly concerns validation strategies, which would greatly profit from assays that fundamentally differ from the routinely employed miRNA-targeted reporter assays.
Collapse
Affiliation(s)
- Katerina Brustikova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Kubikova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ctibor Skuta
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Solcova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Bartunek
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Modulation of oncogenic miRNA biogenesis using functionalized polyamines. Sci Rep 2018; 8:1667. [PMID: 29374231 PMCID: PMC5786041 DOI: 10.1038/s41598-018-20053-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs are key factors in the regulation of gene expression and their deregulation has been directly linked to various pathologies such as cancer. The use of small molecules to tackle the overexpression of oncogenic miRNAs has proved its efficacy and holds the promise for therapeutic applications. Here we describe the screening of a 640-compound library and the identification of polyamine derivatives interfering with in vitro Dicer-mediated processing of the oncogenic miR-372 precursor (pre-miR-372). The most active inhibitor is a spermine-amidine conjugate that binds to the pre-miR-372 with a KD of 0.15 µM, and inhibits its in vitro processing with a IC50 of 1.06 µM. The inhibition of miR-372 biogenesis was confirmed in gastric cancer cells overexpressing miR-372 and a specific inhibition of proliferation through de-repression of the tumor suppressor LATS2 protein, a miR-372 target, was observed. This compound modifies the expression of a small set of miRNAs and its selective biological activity has been confirmed in patient-derived ex vivo cultures of gastric carcinoma. Polyamine derivatives are promising starting materials for future studies about the inhibition of oncogenic miRNAs and, to the best of our knowledge, this is the first report about the application of functionalized polyamines as miRNAs interfering agents.
Collapse
|
8
|
Yan H, Bhattarai U, Guo ZF, Liang FS. Regulating miRNA-21 Biogenesis By Bifunctional Small Molecules. J Am Chem Soc 2017; 139:4987-4990. [PMID: 28287718 DOI: 10.1021/jacs.7b00610] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new strategy to regulate microRNAs (miRNAs) biogenesis by using bifunctional small molecules that consist of a pre-miRNA binding unit connected by a linker to a Dicer inhibiting unit. In this effort, fluorescence polarization-based screening was used to identify neomycin as a pre-miR-21 binding ligand. Although neomycin cannot inhibit miR-21 maturation, linking it to the RNase inhibitor 1 forms the bifunctional conjugate 7A, which inhibits the production of miR-21. We expect that this strategy will be applicable to design other molecules for miRNA regulation.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Umesh Bhattarai
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Zhi-Fo Guo
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| | - Fu-Sen Liang
- Department of Chemistry and Chemical Biology, University of New Mexico , 300 Terrace Street NE, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
9
|
Velagapudi SP, Luo Y, Tran T, Haniff HS, Nakai Y, Fallahi M, Martinez GJ, Childs-Disney JL, Disney MD. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA. ACS CENTRAL SCIENCE 2017; 3:205-216. [PMID: 28386598 PMCID: PMC5364451 DOI: 10.1021/acscentsci.7b00009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 05/03/2023]
Abstract
RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.
Collapse
Affiliation(s)
- Sai Pradeep Velagapudi
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Yiling Luo
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Tuan Tran
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Hafeez S. Haniff
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Yoshio Nakai
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Mohammad Fallahi
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Gustavo J. Martinez
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Jessica L. Childs-Disney
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
| | - Matthew D. Disney
- Department
of Chemistry, Informatics Core, and Genomics Core, The Scripps
Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United
States
- E-mail:
| |
Collapse
|
10
|
Degtyareva NN, Gong C, Story S, Levinson NS, Oyelere AK, Green KD, Garneau-Tsodikova S, Arya DP. Antimicrobial Activity, AME Resistance, and A-Site Binding Studies of Anthraquinone-Neomycin Conjugates. ACS Infect Dis 2017; 3:206-215. [PMID: 28103015 PMCID: PMC5971063 DOI: 10.1021/acsinfecdis.6b00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antibacterial effects of aminoglycosides are based on their association with the A-site of bacterial rRNA and interference with the translational process in the bacterial cell, causing cell death. The clinical use of aminoglycosides is complicated by resistance and side effects, some of which arise from their interactions with the human mitochondrial 12S rRNA and its deafness-associated mutations, C1494U and A1555G. We report a rapid assay that allows screening of aminoglycoside compounds to these classes of rRNAs. These screening tools are important to find antibiotics that selectively bind to the bacterial A-site rather than human, mitochondrial A-sites and its mutant homologues. Herein, we report our preliminary work on the optimization of this screen using 12 anthraquinone-neomycin (AMA-NEO) conjugates against molecular constructs representing five A-site homologues, Escherichia coli, human cytosolic, mitochondrial, C1494U, and A1555G, using a fluorescent displacement screening assay. These conjugates were also tested for inhibition of protein synthesis, antibacterial activity against 14 clinically relevant bacterial strains, and the effect on enzymes that inactivate aminoglycosides. The AMA-NEO conjugates demonstrated significantly improved resistance against aminoglycoside-modifying enzymes (AMEs), as compared with NEO. Several compounds exhibited significantly greater inhibition of prokaryotic protein synthesis as compared to NEO and were extremely poor inhibitors of eukaryotic translation. There was significant variation in antibacterial activity and MIC of selected compounds between bacterial strains, with Escherichia coli, Enteroccocus faecalis, Citrobacter freundii, Shigella flexneri, Serratia marcescens, Proteus mirabilis, Enterobacter cloacae, Staphylococcus epidermidis, and Listeria monocytogenes exhibiting moderate to high sensitivity (50-100% growth inhibition) whereas Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiellla pneumoniae, and MRSA strains expressed low sensitivity, as compared to the parent aminoglycoside NEO.
Collapse
Affiliation(s)
| | - Changjun Gong
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Nathanael S. Levinson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Keith D. Green
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | | | - Dev P. Arya
- NUBAD, LLC, Greenville, South Carolina 29605, United States
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
11
|
Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Murata A, Otabe T, Zhang J, Nakatani K. BzDANP, a Small-Molecule Modulator of Pre-miR-29a Maturation by Dicer. ACS Chem Biol 2016; 11:2790-2796. [PMID: 27536863 DOI: 10.1021/acschembio.6b00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We here report the synthesis of novel molecule BzDANP having a three-ring benzo[c][1,8]naphthyridine system, the evaluation of its binding properties to a single nucleotide bulge in RNA duplexes, and BzDANP-induced suppression of pre-miR-29a processing by Dicer. BzDANP showed much increased affinity to the bulged RNAs as compared with the parent molecule DANP, which possesses the same hydrogen-bonding surface as BzDANP but in a two-ring [1,8]naphthyridine system. Melting temperature analysis of bulged RNAs showed that BzDANP most effectively stabilized the C-bulged RNA. Dicer-mediated processing of pre-miR-29a was suppressed by BzDANP in a concentration dependent manner. The presence of the C-bulge at the Dicer cleavage site was effective for the suppression of pre-miR-29a processing by BzDANP. These results demonstrated that the small molecule binding to the bulged site in the vicinity of the Dicer cleavage site could be a potential modulator for the maturation of pre-miRNA.
Collapse
Affiliation(s)
- Asako Murata
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Otabe
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Jinhua Zhang
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory
Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
13
|
Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. Future Med Chem 2016; 8:803-16. [DOI: 10.4155/fmc-2016-0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
miRNAs are a recently discovered class of small noncoding RNAs implicated in the regulation of gene expression. The deregulation of miRNAs levels has been linked to the development of various cancers where oncogenic miRNAs are overexpressed and tumor suppressor miRNAs are underexpressed. Here we report the three main strategies developed in order to discover small-molecule drugs able to selectively interfere with oncogenic miRNAs: the high throughput screening of large libraries of compounds, the focused screening of small libraries of molecules that are known to be able to interact with RNA thus being supposed modulators of miRNAs pathway and the design of small molecules based on the secondary structure of targeted RNA and/or three-dimensional structure of enzymes involved in miRNAs pathway.
Collapse
|
14
|
Salvador MA, Birnbaum D, Charafe-Jauffret E, Ginestier C. Breast cancer stem cells programs: enter the (non)-code. Brief Funct Genomics 2016; 15:186-99. [PMID: 26955842 DOI: 10.1093/bfgp/elw003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast tumors exhibit a hierarchical cellular organization driven by several subpopulations of cancer stem cells (CSCs). These breast CSC subpopulations are able to infinitely self-renew and to differentiate, giving rise to tumor heterogeneity. Accumulating evidence show that breast CSCs resist conventional therapies and i`nitiate tumor relapse. The development of anti-CSCs therapies may therefore greatly improve patient survival. A better elucidation of molecular circuitries involved in stemness would offer new relevant targets. Noncoding RNAs, especially microRNAs and long noncoding RNAs, are regulators of cell identity and are notably found deregulated in breast CSCs. This review will focus on noncoding RNAs involved in CSCs biology during breast cancer initiation, maintenance, therapeutic resistance and metastatic progression. Potential clinical applications using noncoding RNAs as biomarkers or therapies will be discussed.
Collapse
|
15
|
Vo DD, Tran TPA, Staedel C, Benhida R, Darfeuille F, Di Giorgio A, Duca M. Oncogenic MicroRNAs Biogenesis as a Drug Target: Structure-Activity Relationship Studies on New Aminoglycoside Conjugates. Chemistry 2016; 22:5350-62. [DOI: 10.1002/chem.201505094] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Duc Duy Vo
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Thi Phuong Anh Tran
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Cathy Staedel
- University of Bordeaux; ARNA Laboratory; 33000 Bordeaux France
- INSERM, U869; 33000 Bordeaux France
| | - Rachid Benhida
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Fabien Darfeuille
- University of Bordeaux; ARNA Laboratory; 33000 Bordeaux France
- INSERM, U869; 33000 Bordeaux France
| | - Audrey Di Giorgio
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| | - Maria Duca
- University of Nice Sophia Antipolis; Institute of Chemistry of Nice, UMR7272 CNRS, Parc Valrose; 06100 Nice France
| |
Collapse
|
16
|
Relier S, Yazdani L, Ayad O, Choquet A, Bourgaux JF, Prudhomme M, Pannequin J, Macari F, David A. Antibiotics inhibit sphere-forming ability in suspension culture. Cancer Cell Int 2016; 16:6. [PMID: 26877710 PMCID: PMC4751670 DOI: 10.1186/s12935-016-0277-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/03/2016] [Indexed: 01/19/2023] Open
Abstract
Background This last decade, a lot of emphasis has been placed on developing new cancer cell culture models, closer to in vivo condition, in order to test new drugs and therapies. In the case of colorectal cancer, the use of patient biopsies to seed 3D primary cultures and mimic tumor initiation necessitates the use of antibiotics to prevent microbial intestinal contamination. However, not only long term use of antibiotics may mask the presence of low levels of microbial contamination, it may also impact cancer cell phenotype. Methods In this study we tested the impact of penicillin-streptomycin cocktail addition in both monolayer and suspension culture. To ensure the reliability of our observations we used six different cell lines and each experiment was performed in triplicate. Results were analyzed with Student’s t test. Results We show that penicillin–streptomycin cocktail inhibits the sphere-forming ability of six cancer cell lines in suspension culture though it has no impact in monolayer culture. We correlate this effect with a significant decrease of cancer stem cells pool which holds self-renewal potential. Conclusions Overall, this study warns against systematic addition of antibiotics in growth medium and raises the interesting possibility of using antibiotics to target cancer stem cells.
Collapse
Affiliation(s)
- Sébastien Relier
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34094 Montpellier, France.,INSERM, U1191, 34094 Montpellier, France.,Université de Montpellier, 34094 Montpellier, France
| | - Laura Yazdani
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34094 Montpellier, France.,INSERM, U1191, 34094 Montpellier, France.,Université de Montpellier, 34094 Montpellier, France
| | - Oualid Ayad
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34094 Montpellier, France.,INSERM, U1191, 34094 Montpellier, France.,Université de Montpellier, 34094 Montpellier, France
| | - Armelle Choquet
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34094 Montpellier, France.,INSERM, U1191, 34094 Montpellier, France.,Université de Montpellier, 34094 Montpellier, France
| | | | | | - Julie Pannequin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34094 Montpellier, France.,INSERM, U1191, 34094 Montpellier, France.,Université de Montpellier, 34094 Montpellier, France
| | - Françoise Macari
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34094 Montpellier, France.,INSERM, U1191, 34094 Montpellier, France.,Université de Montpellier, 34094 Montpellier, France
| | - Alexandre David
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34094 Montpellier, France.,INSERM, U1191, 34094 Montpellier, France.,Université de Montpellier, 34094 Montpellier, France
| |
Collapse
|