1
|
Alizadeh A, Bagherinejad A, Kayanian J, Vianello R. An expedient metal-free cascade route to chromonyl diene scaffolds: thermodynamic vs. kinetic control. RSC Adv 2022; 12:34946-34950. [PMID: 36540217 PMCID: PMC9728021 DOI: 10.1039/d2ra05704b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/29/2022] [Indexed: 09/10/2024] Open
Abstract
A piperidine-catalyzed reaction between 3-formylchromone, 1,3-dimethyl barbituric acid, and ylidenemalononitriles is developed that offers chromonyl diene products in good yields. This cascade reaction proceeds via the insertion of ylidenemalononitriles between the Knoevenagel adduct obtained from 3-formylchromone and 1,3-dimethylbarbituric acid, where the pyrimidine-based enaminone is integrated with the chromone through the central diene linker. Similarly, introducing pyrimidine-based enaminone into the terminal part of the chromonyl diene scaffold gave an equilibrium mixture of rotational isomers in DMSO, which could be separated and isolated by crystallization. The computational analysis confirmed the role of barbiturate in directing the type of final chromonyl diene via kinetic or thermodynamic control. Moreover, computations revealed that one of these species, observed in the NMR spectra, is produced by the bond cleavage in the spirocyclic intermediate.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University P. O. Box 14115-175 Tehran Iran
| | - Akram Bagherinejad
- Department of Chemistry, Tarbiat Modares University P. O. Box 14115-175 Tehran Iran
| | - Jasmine Kayanian
- Department of Chemistry, Tarbiat Modares University P. O. Box 14115-175 Tehran Iran
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| |
Collapse
|
2
|
Shi Y, Xue Y, Wang C, Yu L. Nucleophosmin 1: from its pathogenic role to a tantalizing therapeutic target in acute myeloid leukemia. Hematology 2022; 27:609-619. [PMID: 35621728 DOI: 10.1080/16078454.2022.2067939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nucleophosmin 1 (NPM1, also known as B23) is a multifunctional protein involved in a variety of cellular processes, including ribosomal maturation, centrosome replication, maintenance of genomic stability, cell cycle control, and apoptosis. NPM1 is the most commonly mutated gene in adult acute myeloid leukemia (AML) and is present in approximately 40% of all AML cases. The underlying mechanisms of mutant NPM1 (NPM1mut) in leukemogenesis remain unclear. This review summarizes the structure and physiological function of NPM1, mechanisms underlying the pathogenesis of NPM1-mutated AML, and the potential role of NPM1 as a therapeutic target. It is reported that dysfunctional NPM1 might cause AML pathogenesis via its role as a protein chaperone, inhibiting differentiation of leukemia stem cells and regulation of non-coding RNAs. Besides conventional chemotherapies, NPM1 is a promising therapeutic target against AML that warrants further investigation. NPM1-based therapeutic strategies include inducing nucleolar relocalisation of NPM1 mutants, interfering with NPM1 oligomerization, and NPM1 as an immune response target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuhao Xue
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
3
|
Tehrani RR, Sheikhhosseini E, Ghazanfari D, Akhgar M. Synthesis and Biological Examination of Novel Tetra Pyranopyrimidine Heterocycles Contained Lipophilic Spacers. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2059530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Dadkhoda Ghazanfari
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mohammadreza Akhgar
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
4
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
5
|
Badiger KB, Khatavi S, Kamanna K. Expedite Greener Method Synthesis of Pyrano[2,3-d]Pyrimidine-2,4,7-Triones Accelerated by Ultrasound Irradiation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2027790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Krishnappa B. Badiger
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| | - Santosh Khatavi
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| | - Kantharaju Kamanna
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| |
Collapse
|
6
|
Ziarani GM, Khademi M, Mohajer F, Yadav S, Tomar R. Recent Advances in the Application of Barbituric Acid Derivatives in Multicomponent Reactions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272826666211229150318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Barbituric acid is a pyrimidine heterocyclic organic compound, which is pharmacologically active. It is important to build structures containing various medicinal activities. This compound attracts the scientific research community in organic synthesis. It can be used in the synthesis of polyheterocyclic, natural, medicinal compounds, and organic sensors. Herein, the utilization of barbituric or thiobarbituric acid in multicomponent reactions is reported from 2016-2021 in this manuscript.
Collapse
Affiliation(s)
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran Iran
| | - Sangeete Yadav
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, India
| | - Ravi Tomar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, India
| |
Collapse
|
7
|
Popławski P, Bogusławska J, Hanusek K, Piekiełko-Witkowska A. Nucleolar Proteins and Non-Coding RNAs: Roles in Renal Cancer. Int J Mol Sci 2021; 22:ijms222313126. [PMID: 34884928 PMCID: PMC8658237 DOI: 10.3390/ijms222313126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Renal cell cancer is the most frequent kidney malignancy. Most RCC cases are classified as clear cell renal cell carcinoma (ccRCC), characterized by high aggressiveness and poor prognosis for patients. ccRCC aggressiveness is defined by classification systems based on changes in morphology of nucleoli, the membraneless substructures of nuclei. The latter act as the sites of ribosome biogenesis as well as the hubs that trap and immobilize proteins, preventing their action in other cellular compartments. Thereby, nucleoli control cellular functioning and homeostasis. Nucleoli are also the sites of activity of multiple noncoding RNAs, including snoRNAs, IGS RNA, and miRNAs. Recent years have brought several remarkable discoveries regarding the role of nucleolar non-coding RNAs, in particular snoRNAs, in ccRCC. The expression of snoRNAs is largely dysregulated in ccRCC tumors. snoRNAs, such as SNHG1, SNHG4 and SNHG12, act as miRNA sponges, leading to aberrant expression of oncogenes and tumor suppressors, and directly contributing to ccRCC development and progression. snoRNAs can also act without affecting miRNA functioning, by altering the expression of key oncogenic proteins such as HIF1A. snoRNAs are also potentially useful biomarkers of ccRCC progression. Here, we comprehensively discuss the role of nucleolar proteins and non-coding RNAs in ccRCC.
Collapse
|
8
|
In vitro evaluation of the anticancer activity of barbituric/thiobarbituric acid-based chromene derivatives. Mol Biol Rep 2021; 48:7637-7646. [PMID: 34741706 DOI: 10.1007/s11033-021-06738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cancer is one of the most important reasons for mortality worldwide. Several synthetic products have shown valuable efficiency as an anticancer medicines. Chromene derivatives have long been used as the promising compounds which are potent in inhibition of the growth of tumors. METHODS AND RESULTS In this study, we investigate an anticancer activity of barbituric/thiobarbituric acid-based chromene derivates. For this purpose, viability, antioxidant and apoptotic assays were conducted using three different cancer cell lines (A2780, MCF7, and A549). In most cases, the antiproliferative activity of barbituric acid-based derivatives was higher than that of thiobarbituric acid-based compounds. Among 14 compounds, compound 4g was the most potent one, which showed the highest effect on cells by increasing the accumulation of ROS (up to 540% increase), increasing the level of caspase-3 and caspase-9 (~ 35% increase), and decreasing the mitochondrial membrane potential (2.5 folds reduction). To characterize the type of cell death involved into our experiment Annexin V/PI double staining of compound 4g was performed. The results showed that the number of late apoptotic and/or necrotic cells (Ann V + /PI +) increased fourfold upon treatment with IC50 concentration of 4g. CONCLUSIONS Overall, the anti-proliferative activity of barbituric acid-based derivatives was higher than that of thiobarbituric acid compounds, and compound 4g can be introduced as a potential candidate to prevent various cancers.
Collapse
|
9
|
Darrigues E, Zhao EH, De Loose A, Lee MP, Borrelli MJ, Eoff RL, Galileo DS, Penthala NR, Crooks PA, Rodriguez A. Biobanked Glioblastoma Patient-Derived Organoids as a Precision Medicine Model to Study Inhibition of Invasion. Int J Mol Sci 2021; 22:ijms221910720. [PMID: 34639060 PMCID: PMC8509225 DOI: 10.3390/ijms221910720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is highly resistant to treatment and invasion into the surrounding brain is a cancer hallmark that leads to recurrence despite surgical resection. With the emergence of precision medicine, patient-derived 3D systems are considered potentially robust GBM preclinical models. In this study, we screened a library of 22 anti-invasive compounds (i.e., NF-kB, GSK-3-B, COX-2, and tubulin inhibitors) using glioblastoma U-251 MG cell spheroids. We evaluated toxicity and invasion inhibition using a 3D Matrigel invasion assay. We next selected three compounds that inhibited invasion and screened them in patient-derived glioblastoma organoids (GBOs). We developed a platform using available macros for FIJI/ImageJ to quantify invasion from the outer margin of organoids. Our data demonstrated that a high-throughput invasion screening can be done using both an established cell line and patient-derived 3D model systems. Tubulin inhibitor compounds had the best efficacy with U-251 MG cells, however, in ex vivo patient organoids the results were highly variable. Our results indicate that the efficacy of compounds is highly related to patient intra and inter-tumor heterogeneity. These results indicate that such models can be used to evaluate personal oncology therapeutic strategies.
Collapse
Affiliation(s)
- Emilie Darrigues
- Department of Neurosurgery, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.D.); (E.H.Z.); (A.D.L.); (M.P.L.)
| | - Edward H. Zhao
- Department of Neurosurgery, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.D.); (E.H.Z.); (A.D.L.); (M.P.L.)
| | - Annick De Loose
- Department of Neurosurgery, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.D.); (E.H.Z.); (A.D.L.); (M.P.L.)
| | - Madison P. Lee
- Department of Neurosurgery, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.D.); (E.H.Z.); (A.D.L.); (M.P.L.)
| | - Michael J. Borrelli
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Deni S. Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Narsimha R. Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.R.P.); (P.A.C.)
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.R.P.); (P.A.C.)
| | - Analiz Rodriguez
- Department of Neurosurgery, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.D.); (E.H.Z.); (A.D.L.); (M.P.L.)
- Correspondence:
| |
Collapse
|
10
|
Docking and antibacterial activity of novel nontoxic 5-arylidenepyrimidine-triones as inhibitors of NDM-1 and MetAP-1. Future Med Chem 2021; 13:1041-1055. [PMID: 33913733 DOI: 10.4155/fmc-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Antibiotic resistance, which occurs through the action of metallo-β-lactamases (NDM-1), is a serious problem in the treatment of infectious diseases. Therefore, the discovery of new NDM-1 inhibitors and promising antibacterial agents as inhibitors of alternative targets (MetAP-1) is important. Method & results: In this study, a virtual library of 5-arylidene barbituric acids was created and molecular docking was performed for identification of novel possible inhibitors of NDM-1 and MetAP-1. Antibacterial activity (agar well-diffusion assay) and cytotoxicity (alamarBlue assay) of perspective compounds were evaluated. Pharmacokinetic profiles and molecular properties were predicted. Conclusion: We have identified possible novel inhibitors of NDM-1 and MetAP-1 with bacteriostatic activity, most of which are not cytotoxic and have potential excellent drug-likeness properties.
Collapse
|
11
|
Madhvi, Utreja D, Sharma S. Barbiturates: A Review of Synthesis and Antimicrobial Research Progress. Curr Org Synth 2021; 19:31-55. [PMID: 33855946 DOI: 10.2174/1570179418666210414104857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Barbituric acid and its derivatives have turned heads for several years as an indispensable class of compounds in the pharmaceutical industry because of their vast assortment of biological activities such as anticonvulsants, hypnotics, anti-diabetic, antiviral, anti-AIDS, anti-cancer, anti-microbial and anti-oxidant etc. Plethoras of studies have shed light on the properties, synthesis, and reactivity of these compounds. The depiction of multiple biological activities by barbiturates compelled us and by virtue of which herein we have mediated over the progress of synthesis of numerous kinds of compounds derived from barbituric acid with well-known and typical examples from 2016 to the present. OBJECTIVE The review focuses on the advancements in methods of synthesis of barbituric acid derivatives and their applications as antimicrobial agents. CONCLUSION This review will help future researchers to analyze the previous studies and to explore new compounds for the development of efficient antimicrobial drugs.
Collapse
Affiliation(s)
- Madhvi
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| |
Collapse
|
12
|
Mehta A, Raj P, Sundriyal S, Gopal B, Varshney U. Use of a molecular beacon based fluorescent method for assaying uracil DNA glycosylase (Ung) activity and inhibitor screening. Biochem Biophys Rep 2021; 26:100954. [PMID: 33665381 PMCID: PMC7900708 DOI: 10.1016/j.bbrep.2021.100954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Uracil DNA glycosylases are an important class of enzymes that hydrolyze the N-glycosidic bond between the uracil base and the deoxyribose sugar to initiate uracil excision repair. Uracil may arise in DNA either because of its direct incorporation (against A in the template) or because of cytosine deamination. Mycobacteria with G, C rich genomes are inherently at high risk of cytosine deamination. Uracil DNA glycosylase activity is thus important for the survival of mycobacteria. A limitation in evaluating the druggability of this enzyme, however, is the absence of a rapid assay to evaluate catalytic activity that can be scaled for medium to high-throughput screening of inhibitors. Here we report a fluorescence-based method to assay uracil DNA glycosylase activity. A hairpin DNA oligomer with a fluorophore at its 5′ end and a quencher at its 3′ ends was designed incorporating five consecutive U:A base pairs immediately after the first base pair (5′ C:G 3’) at the top of the hairpin stem. Enzyme assays performed using this fluorescent substrate were seen to be highly sensitive thus enabling investigation of the real time kinetics of uracil excision. Here we present data that demonstrate the feasibility of using this assay to screen for inhibitors of Mycobacterium tuberculosis uracil DNA glycosylase. We note that this assay is suitable for high-throughput screening of compound libraries for uracil DNA glycosylase inhibitors. A novel molecular beacon based fluorescent method to assay uracil DNA glycosylase (UDG) activity has been developed. The single step assay is useful to determine real-time kinetics of uracil release. The assay is useful for high throughput screening of uracil DNA glycosylase inhibitors.
Collapse
Affiliation(s)
- Avani Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | | | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
13
|
Traver G, Sekhar KR, Crooks PA, Keeney DS, Freeman ML. Targeting NPM1 in irradiated cells inhibits NPM1 binding to RAD51, RAD51 foci formation and radiosensitizes NSCLC. Cancer Lett 2020; 500:220-227. [PMID: 33358698 PMCID: PMC7822076 DOI: 10.1016/j.canlet.2020.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
The ability of chemo-radiation therapy to control locally advanced stage III non-small cell lung cancer (NSCLC) is poor. While addition of consolidation immunotherapy has improved outcomes in subsets of patients there is still an urgent need for new therapeutic targets. Emerging research indicates that nucleophosmin1 (NPM1) is over-expressed in NSCLC, promotes tumor growth and that over-expression correlates with a lower survival probability. NPM1 is critical for APE1 base excision activity and for RAD51-mediated repair of DNA double strand breaks (DSBs). YTR107 is a small molecule radiation sensitizer that has been shown to bind to NPM1, suppressing pentamer formation. Here we show that in irradiated cells YTR107 inhibits SUMOylated NPM1 from associating with RAD51, RAD51 foci formation and repair of DSBs. YTR107 acts synergistically with the PARP1/2 inhibitor ABT 888 to increase replication stress and radiation-induced cell lethality. YTR107 was found to radiosensitize tumor initiating cells. Congruent with this knowledge, adding YTR107 to a fractionated irradiation regimen diminished NSCLC xenograft growth and increased overall survival. These data support the hypothesis that YTR107 represents a therapeutic target for control of NSCLC.
Collapse
MESH Headings
- Barbiturates/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Breaks, Double-Stranded/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
- Humans
- Indoles/pharmacology
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Nuclear Proteins/genetics
- Nucleophosmin
- Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors
- Poly (ADP-Ribose) Polymerase-1/genetics
- Rad51 Recombinase/genetics
- Radiation Tolerance/drug effects
- Radiation-Sensitizing Agents/pharmacology
- Sumoylation/drug effects
- Sumoylation/radiation effects
Collapse
Affiliation(s)
- Geri Traver
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR72205, USA
| | - Diane S Keeney
- Cumberland Emerging Technologies, Inc., 2525 West End Ave, Suite 950, Nashville, TN, 37203-1608, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
15
|
Ranjbar S, Shahvaran PS, Edraki N, Khoshneviszadeh M, Darroudi M, Sarrafi Y, Hamzehloueian M, Khoshneviszadeh M. 1,2,3-Triazole-linked 5-benzylidene (thio)barbiturates as novel tyrosinase inhibitors and free-radical scavengers. Arch Pharm (Weinheim) 2020; 353:e2000058. [PMID: 32638438 DOI: 10.1002/ardp.202000058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/08/2022]
Abstract
In this study, benzyl-1,2,3-triazole-linked 5-benzylidene (thio)barbiturate derivatives 7a-d and 8a-h were designed as potential tyrosinase inhibitors and free-radical scavengers. The twelve derivatives were synthesized via the [3+2] cycloaddition reaction of the corresponding benzyl azide as a dipole and the corresponding alkyne as a dipolarophile in the presence of copper(I) species, generated in situ from copper(II)/ascorbate. The thiobarbiturate derivative 8h and the barbiturate derivative 8b bearing 4-fluoro and 4-bromo groups on the benzyl-triazole moiety were found to be the most potent tyrosinase inhibitors with IC50 values of 24.6 ± 0.9 and 26.8 ± 0.8 μM, respectively. Almost all the compounds showed a good radical scavenging activity with EC50 values in the range of 29.9-324.9 μM. Derivatives 7a, 8f, and 8h were the most potent free-radical scavengers with EC50 values of 29.9 ± 0.8, 36.8 ± 0.9, and 39.2 ± 1.1 μM, respectively. The kinetic analysis revealed that compound 8h was a mixed-type tyrosinase inhibitor. The molecular docking analysis indicated that 8b and 8h were well accommodated in the active site of the tyrosinase enzyme and possessed the most negative binding energy values of -8.55 and -8.81 kcal/mol, respectively. Moreover, it was found that the two residues, Asn81 and Glu322, played a significant role in forming stable enzyme-inhibitor complexes.
Collapse
Affiliation(s)
- Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa-Sadat Shahvaran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdieh Darroudi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Wang YH, Suk FM, Liu CL, Chen TL, Twu YC, Hsu MH, Liao YJ. Antifibrotic Effects of a Barbituric Acid Derivative on Liver Fibrosis by Blocking the NF-κB Signaling Pathway in Hepatic Stellate Cells. Front Pharmacol 2020; 11:388. [PMID: 32296336 PMCID: PMC7136425 DOI: 10.3389/fphar.2020.00388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cells (HSCs) are the major profibrogenic cells that promote the pathogenesis of liver fibrosis. The crosstalk between transforming growth factor-β1 (TGF-β1) signaling and lipopolysaccharide (LPS)-induced NF-κB signaling plays a critical role in accelerating liver fibrogenesis. Until now, there have been no FDA-approved drug treatments for liver fibrosis. Barbituric acid derivatives have been used as antiasthmatic drugs in the clinic; however, the effect of barbituric acid derivatives in treating liver fibrosis remains unknown. In this study, we synthesized a series of six barbituric acid (BA) derivatives, and one of the compounds, BA-5, exhibited the best ability to ameliorate TGF-β1-induced HSC activation without overt cytotoxic effects. Then, we treated HSCs and RAW264.7 macrophages with BA-5 to analyze the cross-talk of anti-fibrotic and anti-inflammatory effects. Carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was used to evaluate the therapeutic effects of BA-5. Treatment with BA-5 inhibited TGF-β1-induced α-SMA, collagen1a2, and phosphorylated smad2/3 expression in HSCs. Furthermore, BA-5 treatment reversed the LPS-induced reduction in BAMBI protein and decreased IκBα and NF-κB phosphorylation in HSCs. NF-κB nuclear translocation, MCP-1 secretion, and ICAM-1 expression were also inhibited in BA-5-treated HSCs. Conditioned medium collected from BA-5-treated HSCs showed a reduced ability to activate RAW264.7 macrophages by inhibiting the MAPK pathway. In the mouse model, BA-5 administration reduced CCl4-induced liver damage, liver fibrosis, and F4/80 expression without any adverse effects. In conclusion, our study showed that the barbituric acid derivative BA-5 inhibits HSCs activation and liver fibrosis by blocking both the TGF-β1 and LPS-induced NF-κB signaling pathways and further inhibits macrophages recruitment and activation.
Collapse
Affiliation(s)
- Yuan-Hsi Wang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Chen Y, Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther Adv Hematol 2020; 11:2040620719899818. [PMID: 32071709 PMCID: PMC6997955 DOI: 10.1177/2040620719899818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleophosmin (NPM1) is an abundant nucleolar protein that is
implicated in a variety of biological processes and in the pathogenesis of
several human malignancies. For hematologic malignancies, approximately
one-third of anaplastic large-cell non-Hodgkin’s lymphomas were found to express
a fusion between NPM1 and the catalytic domain of anaplastic
lymphoma receptor tyrosine kinase. About 50–60% of acute myeloid leukemia
patients with normal karyotype carry NPM1 mutations, which are
characterized by cytoplasmic dislocation of the NPM1 protein.
Nevertheless, NPM1 is overexpressed in various hematologic and
solid tumor malignancies. NPM1 overexpression is considered a
prognostic marker of recurrence and progression of cancer. Thus,
NPM1 abnormalities play a critical role in several types of
hematologic malignancies. This has led to intense interest in the development of
an NPM1 targeting strategy for cancer therapy. The aim of this
review is to summarize present knowledge on NPM1 origin,
pathogenesis, and therapeutic interventions in hematologic malignancies.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
18
|
Apostolov S, Vastag G, Mrdjan G, Nakomčić J, Stojiljković I. Chromatographic descriptors in QSAR study of barbiturates. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1590207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Suzana Apostolov
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Gyöngyi Vastag
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Gorana Mrdjan
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Nakomčić
- Faculty of Pharmacy, University Business Academy in Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
19
|
Straightforward multicomponent synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones in β-cyclodextrin cavity and evaluation of their anticancer activity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01633-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Griffiths K, Kostakis GE. Transformative 3d-4f coordination cluster carriers. Dalton Trans 2018; 47:12011-12034. [PMID: 30051130 DOI: 10.1039/c8dt02362j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this perspective is to summarise the use of the reported 3d-4f Coordination Clusters (CCs) in catalytic reactions and to demonstrate the potential of this emerging field. The pioneering work of Shibasaki, Matsunaga and others, demonstrated the use of 3d-4f in situ systems to catalyse asymmetric organic transformations. Our recent studies show that well characterised 3d-4f CCs catalyse numerous organic transformations and useful mechanistic aspects of their catalysis can be obtained. Furthermore, we have shown that by manipulation of the metal ion coordination environment; the nature of the 3d and lanthanide ions and the organic periphery of the ligand can all improve the efficacy of a 3d-4f CC catalyst. All in situ formed and well characterized 3d-4f CCs involved in catalysis are discussed.
Collapse
Affiliation(s)
- Kieran Griffiths
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | | |
Collapse
|
21
|
Bhatt P, Kumar M, Jha A. Design, Synthesis and Anticancer Evaluation of Oxa/Thiadiazolylhydrazones of Barbituric and Thiobarbituric Acid: A Collective In Vitro and In Silico Approach. ChemistrySelect 2018. [DOI: 10.1002/slct.201800832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Priyanka Bhatt
- Department of Chemistry; GIS; Gandhi Institute of Technology and Management (GITAM), Rushikonda; Visakhapatnam-530045 India
| | - Manoj Kumar
- Department of Chemistry; Indian Institute of Technology Roorkee, Roorkee; Uttarakhand-247667 India
| | - Anjali Jha
- Department of Chemistry; GIS; Gandhi Institute of Technology and Management (GITAM), Rushikonda; Visakhapatnam-530045 India
| |
Collapse
|
22
|
Zafar MK, Maddukuri L, Ketkar A, Penthala NR, Reed MR, Eddy S, Crooks PA, Eoff RL. A Small-Molecule Inhibitor of Human DNA Polymerase η Potentiates the Effects of Cisplatin in Tumor Cells. Biochemistry 2018; 57:1262-1273. [PMID: 29345908 DOI: 10.1021/acs.biochem.7b01176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Translesion DNA synthesis (TLS) performed by human DNA polymerase eta (hpol η) allows tolerance of damage from cis-diamminedichloroplatinum(II) (CDDP or cisplatin). We have developed hpol η inhibitors derived from N-aryl-substituted indole barbituric acid (IBA), indole thiobarbituric acid (ITBA), and indole quinuclidine scaffolds and identified 5-((5-chloro-1-(naphthalen-2-ylmethyl)-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (PNR-7-02), an ITBA derivative that inhibited hpol η activity with an IC50 value of 8 μM and exhibited 5-10-fold specificity for hpol η over replicative pols. We conclude from kinetic analyses, chemical footprinting assays, and molecular docking that PNR-7-02 binds to a site on the little finger domain and interferes with the proper orientation of template DNA to inhibit hpol η. A synergistic increase in CDDP toxicity was observed in hpol η-proficient cells co-treated with PNR-7-02 (combination index values = 0.4-0.6). Increased γH2AX formation accompanied treatment of hpol η-proficient cells with CDDP and PNR-7-02. Importantly, PNR-7-02 did not impact the effect of CDDP on cell viability or γH2AX in hpol η-deficient cells. In summary, we observed hpol η-dependent effects on DNA damage/replication stress and sensitivity to CDDP in cells treated with PNR-7-02. The ability to employ a small-molecule inhibitor of hpol η to improve the cytotoxic effect of CDDP may aid in the development of more effective chemotherapeutic strategies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Narsimha R Penthala
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Sarah Eddy
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Peter A Crooks
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
23
|
Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget 2018; 7:44821-44840. [PMID: 27058426 PMCID: PMC5190137 DOI: 10.18632/oncotarget.8599] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Nucleophosmin is a highly and ubiquitously expressed protein, mainly localized in nucleoli but able to shuttle between nucleus and cytoplasm. Nucleophosmin plays crucial roles in ribosome maturation and export, centrosome duplication, cell cycle progression, histone assembly and response to a variety of stress stimuli. Much interest in this protein has arisen in the past ten years, since the discovery of heterozygous mutations in the terminal exon of the NPM1 gene, which are the most frequent genetic alteration in acute myeloid leukemia. Nucleophosmin is also frequently overexpressed in solid tumours and, in many cases, its overexpression correlates with mitotic index and metastatization. Therefore it is considered as a promising target for the treatment of both haematologic and solid malignancies. NPM1 targeting molecules may suppress different functions of the protein, interfere with its subcellular localization, with its oligomerization properties or drive its degradation. In the recent years, several such molecules have been described and here we review what is currently known about them, their interaction with nucleophosmin and the mechanistic basis of their toxicity. Collectively, these molecules exemplify a number of different strategies that can be adopted to target nucleophosmin and we summarize them at the end of the review.
Collapse
|
24
|
Wei YN, Li CB, Li X, Sun HY. Crystal structure of 1,3-dimethyl-5,5-dibenzylbarbituric acid, C20H20N2O3. Z KRIST-NEW CRYST ST 2017. [DOI: 10.1515/ncrs-2017-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC20H20N2O3, orthorhombic, Pbca (no. 61), a = 9.1300(18) Å, b = 16.170(3) Å, c = 24.000(5) Å, V = 3543.2(12) Å3, Z = 8, Rgt(F) = 0.1274, wRref(F2) = 0.1434, T = 293 K.
Collapse
Affiliation(s)
- Ya-Nan Wei
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Chuan-Bi Li
- Key Laboratory of Preparation and Applications of Environmental, Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China
| | - Xue Li
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Han-Yang Sun
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| |
Collapse
|
25
|
Zhang J, Yin G, Du Y, Yang Z, Li Y, Chen L. Michael–Michael Addition Reactions Promoted by Secondary Amine-Thiourea: Stereocontrolled Construction of Barbiturate-Fused Tetrahydropyrano Scaffolds and Pyranocoumarins. J Org Chem 2017; 82:13594-13601. [DOI: 10.1021/acs.joc.7b01902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Guohui Yin
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yuchao Du
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ziqi Yang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yang Li
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ligong Chen
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
26
|
Xie X, Huang W, Peng C, Han B. Organocatalytic Asymmetric Synthesis of Six-Membered Carbocycle-Based Spiro Compounds. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700927] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Xie
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Chengdu University of Traditional Chinese Medicine; Chengdu 611137 People's Republic of China
| | - Wei Huang
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine, School of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 611137 People's Republic of China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Chengdu University of Traditional Chinese Medicine; Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine, School of Pharmacy; Chengdu University of Traditional Chinese Medicine; Chengdu 611137 People's Republic of China
| | - Bo Han
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Chengdu University of Traditional Chinese Medicine; Chengdu 611137 People's Republic of China
| |
Collapse
|
27
|
Liu Y, Zhang Y, Duan HX, Wanyan DY, Wang YQ. Enantioselective organocatalytic Michael additions of N,N'-dialkylbarbituric acids to enones. Org Biomol Chem 2017; 15:8669-8679. [PMID: 28990625 DOI: 10.1039/c7ob02116j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N,N'-Dialkylbarbituric acids as cyclic malonamide donors were successfully used in the enantioselective Michael addition reaction of enones. Using cinchona alkaloid-based bifunctional squaramide as an organocatalyst, this Michael reaction of N,N'-di-tert-butylbarbituric acid with various enones features a highly enantioselective (91-99% ee) production of the corresponding optically active 5-substituted barbituric acid derivatives. The transformations of the Michael product for the barbituric acid structural unit were realized in two ways, deprotection to remove the N-tert-butyl group and alkylation to produce 5,5-disubstituted barbituric acid derivatives.
Collapse
Affiliation(s)
- Ying Liu
- Provincial Key Laboratory of Polyoxometalate Chemistry, Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | | | | | | | | |
Collapse
|
28
|
Golovnev NN, Solovyov LA, Lesnikov MK, Vereshchagin SN, Atuchin VV. Hydrated and anhydrous cobalt (II) barbiturates: Crystal structures, spectroscopic and thermal properties. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Rombola M, Sumaria CS, Montgomery TD, Rawal VH. Development of Chiral, Bifunctional Thiosquaramides: Enantioselective Michael Additions of Barbituric Acids to Nitroalkenes. J Am Chem Soc 2017; 139:5297-5300. [PMID: 28375610 DOI: 10.1021/jacs.7b01115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a general method for the synthesis of chiral thiosquaramides, a class of bifunctional catalysts not previously described in the literature. Thiosquaramides are found to be more acidic and significantly more soluble in nonpolar solvents than their oxosquaramide counterparts, and they are excellent catalysts for the unreported, enantioselective conjugate addition reaction of the barbituric acid pharmacaphore to nitroalkenes, delivering the chiral barbiturate derivatives in high yields and high enantioselectivities, even with catalyst loadings as low as 0.05 mol%.
Collapse
Affiliation(s)
- Michael Rombola
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Chintan S Sumaria
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Thomas D Montgomery
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Viresh H Rawal
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O'Byrne KJ, Richard DJ. Nucleophosmin: from structure and function to disease development. BMC Mol Biol 2016; 17:19. [PMID: 27553022 PMCID: PMC4995807 DOI: 10.1186/s12867-016-0073-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Nucleophosmin (NPM1) is a critical cellular protein that has been implicated in a number of pathways including mRNA transport, chromatin remodeling, apoptosis and genome stability. NPM1 function is a critical requirement for normal cellular biology as is underlined in cancer where NPM1 is commonly overexpressed, mutated, rearranged and sporadically deleted. Consistent with a multifunctional role within the cell, NPM1 can function not only as a proto-oncogene but also as a tumor suppressor. The aim of this review is to look at the less well-described role of NPM1 in the DNA repair pathways as well as the role of NPM1 in the regulation of apoptosis and its mutation in cancers.
Collapse
Affiliation(s)
- Joseph K Box
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Didier Boucher
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|