1
|
Brock CP. Pervasive approximate periodic symmetry in organic P1 structures. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:576-588. [PMID: 35975824 DOI: 10.1107/s2052520622004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The goal of this project was to identify the prevalence of approximate symmetry in organic P1 structures. In the November 2019 version of the Cambridge Structural Database (CSD), there are 2592 organic, P1, R ≤ 0.050 structures; complete, unique entries are available for 1407 Z = Z' > 1 and 1049 Z = Z' = 1 structures. All the Z > 1 structures can have approximate symmetry; the Z = 1 structures were scanned to find those composed of molecules or ions that might lie on a special position and those that have two or more large molecules or ions that are very similar. The number of Z = 1 structures so identified was 285, of which 49 were grouped with the Z > 1 structures because Zeffective > 1. The packing in each of the 1407 + 285 = 1692 structures was investigated. The 144 that should almost certainly have been described in a smaller or higher-symmetry unit cell were removed from the list; 120 of the 144 are composed of achiral or racemic material. (About half of the Z = 1 and 89% of the Z > 1 structures are composed of enantiopure material.) Approximate periodic symmetry was found in 86% of the 1337 remaining Z > 1 structures and in 72% of the 211 remaining Z = 1 structures. About a third of the enantiomerically pure structures mimic inversion symmetry; 38% have approximate rotational symmetry. For the structures of achiral and racemic material, distorted glide or mirror symmetry is more common than is distorted inversion symmetry. Approximate rotational and glide symmetry was found to be periodic in two dimensions considerably more often than in three. In 4% of the structures, different layer types alternate or layers are related by approximate local rotations, as well as by small translations. In 5% of the structures, different parts of the molecule are segregated into two-dimensional regions that have different approximate symmetries. More than a third of the structures that are a distorted version of a higher-symmetry structure were determined at T ≥ 288 K.
Collapse
Affiliation(s)
- Carolyn Pratt Brock
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| |
Collapse
|
2
|
Opretzka LCF, de Freitas HF, Espírito-Santo RF, Abreu LS, Alves IM, Tavares JF, Velozo EDS, Castilho MS, Villarreal CF. 5- O-methylcneorumchromone K Exerts Antinociceptive Effects in Mice via Interaction with GABAA Receptors. Int J Mol Sci 2021; 22:ijms22073413. [PMID: 33810317 PMCID: PMC8037321 DOI: 10.3390/ijms22073413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
The proper pharmacological control of pain is a continuous challenge for patients and health care providers. Even the most widely used medications for pain treatment are still ineffective or unsafe for some patients, especially for those who suffer from chronic pain. Substances containing the chromone scaffold have shown a variety of biological activities, including analgesic effects. This work presents for the first time the centrally mediated antinociceptive activity of 5-O-methylcneorumchromone K (5-CK). Cold plate and tail flick tests in mice showed that the 5-CK-induced antinociception was dose-dependent, longer-lasting, and more efficacious than that induced by morphine. The 5-CK-induced antinociception was not reversed by the opioid antagonist naloxone. Topological descriptors (fingerprints) were employed to narrow the antagonist selection to further investigate 5-CK's mechanism of action. Next, based on the results of fingerprints analysis, functional antagonist assays were conducted on nociceptive tests. The effect of 5-CK was completely reversed in both cold plate and tail-flick tests by GABAA receptor antagonist bicuculline, but not by atropine or glibenclamide. Molecular docking studies suggest that 5-CK binds to the orthosteric binding site, with a similar binding profile to that observed for bicuculline and GABA. These results evidence that 5-CK has a centrally mediated antinociceptive effect, probably involving the activation of GABAergic pathways.
Collapse
Affiliation(s)
- Luiza Carolina França Opretzka
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Humberto Fonseca de Freitas
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Renan Fernandes Espírito-Santo
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador CEP 40 296-710, Brazil
| | - Lucas Silva Abreu
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa CEP 58 050-585, Brazil; (L.S.A.); (J.F.T.)
| | - Iura Muniz Alves
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Josean Fechine Tavares
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa CEP 58 050-585, Brazil; (L.S.A.); (J.F.T.)
| | - Eudes da Silva Velozo
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Marcelo Santos Castilho
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
| | - Cristiane Flora Villarreal
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador CEP 40 170-115, Brazil; (L.C.F.O.); (H.F.d.F.); (R.F.E.-S.); (I.M.A.); (E.d.S.V.); (M.S.C.)
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador CEP 40 296-710, Brazil
- Correspondence: ; Tel.: +55-71-3283-6933
| |
Collapse
|
3
|
Bhagat K, Singh JV, Pagare PP, Kumar N, Sharma A, Kaur G, Kinarivala N, Gandu S, Singh H, Sharma S, Bedi PMS. Rational approaches for the design of various GABA modulators and their clinical progression. Mol Divers 2021; 25:551-601. [PMID: 32170466 PMCID: PMC8422677 DOI: 10.1007/s11030-020-10068-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
GABA (γ-amino butyric acid) is an important inhibitory neurotransmitter in the central nervous system. Attenuation of GABAergic neurotransmission plays an important role in the etiology of several neurological disorders including epilepsy, Alzheimer's disease, Huntington's chorea, migraine, Parkinson's disease, neuropathic pain, and depression. Increase in the GABAergic activity may be achieved through direct agonism at the GABAA receptors, inhibition of enzymatic breakdown of GABA, or by inhibition of the GABA transport proteins (GATs). These functionalities make GABA receptor modulators and GATs attractive drug targets in brain disorders associated with decreased GABA activity. There have been several reports of development of GABA modulators (GABA receptors, GABA transporters, and GABAergic enzyme inhibitors) in the past decade. Therefore, the focus of the present review is to provide an overview on various design strategies and synthetic approaches toward developing GABA modulators. Furthermore, mechanistic insights, structure-activity relationships, and molecular modeling inputs for the biologically active derivatives have also been discussed. Summary of the advances made over the past few years in the clinical translation and development of GABA receptor modulators is also provided. This compilation will be of great interest to the researchers working in the field of neuroscience. From the light of detailed literature, it can be concluded that numerous molecules have displayed significant results and their promising potential, clearly placing them ahead as potential future drug candidates.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Jatinder V Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Gurinder Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Cell and Development Biology Graduate Program, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA.
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| |
Collapse
|
4
|
Liu SY, Wang LZ, Wang YF, Li L, Han GY, Zhang BY, Guo Y, He YZ, Fang SM, Zhang H. Isolation and characterization of two new chroman-4-ones from the endophytic fungus Penicillium chrysogenum obtained from Eucommia ulmoides Oliver. Nat Prod Res 2020; 36:3297-3302. [PMID: 33930984 DOI: 10.1080/14786419.2020.1855161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new chroman-4-ones penicichromanone A (1) and penicichromanone B (2), together with three known compounds conioxepinol C (3), emodin (4) and moniliphenone (5), were obtained from the endophytic fungus Penicillium chrysogenum, which was isolated from the bark of Eucommia ulmoides Oliver. The structures of 1 and 2 were elucidated by detailed analysis of HRESIMS, 1D/2D NMR and ECD spectra. All the compounds were evaluated for their anti-inflammatory activities using HEK293 cells, and compounds 1, 3, 4 and 5 exhibited significant inhibitory effects on TNF-α-stimulated NF-κB activation.
Collapse
Affiliation(s)
- Sheng-Yue Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-Zhi Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue-Fei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guo-Ying Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bing-Yang Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Guo
- Department of Neurology, Tianjin Nankai Hospital, Tianjin, China
| | - Yong-Zhi He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shi-Ming Fang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Marrelli M, Statti G, Conforti F. Hypericum spp.: An Update on the Biological Activities and Metabolic Profiles. Mini Rev Med Chem 2020; 20:66-87. [PMID: 31556858 DOI: 10.2174/1389557519666190926120211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
Plants from the genus Hypericum, one genus of the Hypericaceae family, have attracted a lot of attention for their potential pharmaceutical applications. Most of the studies in the literature focus on H. perforatum L. (common St. John's wort), whose complex spectrum of bioactive compounds makes this species one of the top herbal remedies and supplements in the world. It is also important to compare the studies on other Hypericum species, both from the phytochemical and biological point of view. The aim of this review was to provide an update of most recent studies about biological investigations of plants belonging to Hypericum genus. The metabolic profiles of Hypericum spp. were also discussed in order to present a spectrum of secondary metabolites not previously identified in this genus.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| |
Collapse
|
6
|
Xiao CY, Mu Q, Gibbons S. The Phytochemistry and Pharmacology of Hypericum. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 112 2020; 112:85-182. [DOI: 10.1007/978-3-030-52966-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Bridi H, Meirelles GDC, von Poser GL. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. PHYTOCHEMISTRY 2018; 155:203-232. [PMID: 30153613 DOI: 10.1016/j.phytochem.2018.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Plants of the genus Hypericum (Hypericaceae) are used in folk medicine all over the world, H. perforatum being the most well-known species. Standardized extracts of this plant are commercially-available to treat mild to moderate depression cases. The present review summarizes the literature published up to 2016 concerning the phloroglucinol derivatives isolated from Hypericum species, together with their structural features and biological activities. These phytochemical studies led to the isolation of 101 prenylated phloroglucinols, chromanes and chromenes, 35 dimeric acylphloroglucinols, 235 polycyclic polyprenylated acylphloroglucinols, 25 simple benzophenones and 33 phloroglucinol-terpene adducts. These compounds show a diverse range of biological activities, such as antimicrobial, cytotoxic, antinociceptive and antidepressant-like effects.
Collapse
Affiliation(s)
- Henrique Bridi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre/RS, 90610-000, Brazil
| | | | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre/RS, 90610-000, Brazil.
| |
Collapse
|