1
|
Paul Konken C, Beutel B, Schinor B, Song J, Gerwien H, Korpos E, Burmeister M, Riemann B, Schäfers M, Sorokin L, Haufe G. Influence of N-arylsulfonamido d-valine N-substituents on the selectivity and potency of matrix metalloproteinase inhibitors. Bioorg Med Chem 2023; 90:117350. [PMID: 37270903 DOI: 10.1016/j.bmc.2023.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
To develop matrix metalloproteinase inhibitors (MMPIs) for both therapy and medicinal imaging by fluorescence-based techniques or positron-emission tomography (PET), a small library of eighteen N-substituted N-arylsulfonamido d-valines were synthesized and their potency to inhibit two gelatinases (MMP-2, and MMP-9), two collagenases (MMP-8, and MMP-13) and macrophage elastase (MMP-12) was determined in a Structure-Activity-Relation study with ({4-[3-(5-methylthiophen-2-yl)-1,2,4-oxadiazol-5-yl]phenyl}sulfonyl)-d-valine (1) as a lead. All compounds were shown to be more potent MMP-2/-9 inhibitors (nanomolar range) compared to other tested MMPs. This is a remarkable result considering that a carboxylic acid group is the zinc binding moiety. The compound with a terminal fluoropropyltriazole group at the furan ring (P1' substituent) was only four times less potent in inhibiting MMP-2 activity than the lead compound 1, making this compound a promising probe for PET application (after using a prosthetic group approach to introduce fluorine-18). Compounds with a TEG spacer and a terminal azide or even a fluorescein moiety at the sulfonylamide N atom (P2' substituent) were almost as active as the lead structure 1, making the latter derivative a suitable fluorescence imaging tool.
Collapse
Affiliation(s)
- Christian Paul Konken
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Bernd Beutel
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Benjamin Schinor
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Jian Song
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Hanna Gerwien
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Eva Korpos
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Miriam Burmeister
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Michael Schäfers
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lydia Sorokin
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany; Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
2
|
Qin S, Luo Y, Sun Y, Tian L, Jiang S, yan J, Yang G. Iron/copper co-catalyzed highly selective arylation of sulfinamides with aryl iodides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Beutel B, Song J, Konken CP, Korpos E, Schinor B, Gerwien H, Vidyadharan R, Burmeister M, Li L, Haufe G, Sorokin L. New in Vivo Compatible Matrix Metalloproteinase (MMP)-2 and MMP-9 Inhibitors. Bioconjug Chem 2018; 29:3715-3725. [DOI: 10.1021/acs.bioconjchem.8b00618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bernd Beutel
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Christian Paul Konken
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Benjamin Schinor
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Hanna Gerwien
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Reshma Vidyadharan
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Miriam Burmeister
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstraße 15, 48149 Münster, Germany
| |
Collapse
|
4
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
5
|
Zhong Y, Lu YT, Sun Y, Shi ZH, Li NG, Tang YP, Duan JA. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin Drug Discov 2017; 13:75-87. [PMID: 29088927 DOI: 10.1080/17460441.2018.1398732] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The overexpression of matrix metalloproteinase (MMP) plays an important role in the context of tumor invasion and metastasis, and MMP-2 has been characterized as the most validated target for cancer. Therefore, it is necessary to design matrix metalloproteinase inhibitors (MMPIs) that would be active and selective against MMP-2 but non-selective toward other MMPs. Areas covered: This article clearly describes the structural character of MMP-2 followed by a review of the recent development of selective MMP-2 inhibitors based on their basic structures. Expert opinion: Over the past 30 years, MMPs have been considered to be attractive cancer targets, and several different types of synthetic inhibitors have been identified as anticancer agents, but only a small number of small MMPIs have been examined in clinical trials, and none of these molecules has been established as anticancer drugs due to their adverse effects. One major possibility is that the MMPIs used in clinical trials were broad-spectrum drugs that also inhibited the anti-tumor effects and influenced the mediation of the normal physiological processes of MMPs. MMP-2 has recently been characterized as the most validated target for cancer. Therefore, the design and synthesis of selective MMP-2 inhibitors would be helpful for the treatment of cancer.
Collapse
Affiliation(s)
- Yue Zhong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ting Lu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Ying Sun
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,b Department of Organic Chemistry , China Pharmaceutical University , Nanjing , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,c Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and College of Pharmacy , Shaanxi University of Chinese Medicine , Xianyang , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
6
|
Hong J, Chen YF, Shen JJ, Ding Y. Noninvasive Detection and Imaging of Matrix Metalloproteinases for Cancer Diagnosis. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Cytlak T, Kaźmierczak M, Skibińska M, Koroniak H. Latest achievements in the preparation of fluorinated aminophosphonates and aminophosphonic acids. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1287706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tomasz Cytlak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Monika Skibińska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
8
|
Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology. Diagnostics (Basel) 2016; 6:diagnostics6030032. [PMID: 27598207 PMCID: PMC5039566 DOI: 10.3390/diagnostics6030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/15/2022] Open
Abstract
Over the past several years, there have been major advances in cardiovascular positron emission tomography (PET) in combination with either computed tomography (CT) or, more recently, cardiovascular magnetic resonance (CMR). These multi-modality approaches have significant potential to leverage the strengths of each modality to improve the characterization of a variety of cardiovascular diseases and to predict clinical outcomes. This review will discuss current developments and potential future uses of PET/CT and PET/CMR for cardiovascular applications, which promise to add significant incremental benefits to the data provided by each modality alone.
Collapse
|