1
|
Khalifa A, Khalil A, Abdel-Aziz MM, Albohy A, Mohamady S. Isatin-pyrimidine hybrid derivatives as enoyl acyl carrier protein reductase (InhA) inhibitors against Mycobacterium tuberculosis. Bioorg Chem 2023; 138:106591. [PMID: 37201321 DOI: 10.1016/j.bioorg.2023.106591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Tuberculosis is a worldwide problem that impose a burden on the economy due to continuous development of resistant strains. The development of new antitubercular drugs is a need and can be achieved through inhibition of druggable targets. Mycobacterium tuberculosis enoyl acyl carrier protein (ACP) reductase (InhA) is an important enzyme for Mycobacterium tuberculosis survival. In this study, we report the synthesis of isatin derivatives that could treat TB through inhibition of this enzyme. Compound 4l showed IC50 value (0.6 ± 0.94 µM) similar to isoniazid but is also effective against MDR and XDR Mycobacterium tuberculosis strains (MIC of 0.48 and 3.9 µg/mL, respectively). Molecular docking studies suggest that this compound binds through the use of relatively unexplored hydrophobic pocket in the active site. Molecular dynamics was used to investigate and support the stability of 4l complex with the target enzyme. This study paves the way for the design and synthesis of novel antitubercular drugs.
Collapse
Affiliation(s)
- Abdalrahman Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Amira Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt.
| | - Samy Mohamady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt.
| |
Collapse
|
2
|
Yilmaz M, Inal AU. Microwave assisted synthesis of 2,3-dihydro-4H-benzo[4,5]thiazolo[3,2-a]furo[2,3-d] pyrimidin-4-ones by radical addition of 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a] pyrimidin-4-ones to various conjugated alkenes and dienes mediated Mn(OAc)3. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Eddin MZ, Pervova MG, Zhilina EF, Chistyakov KA, Verbitskiy EV, Rusinov GL, Charushin VN. A new approach to 4-arylstyrenes: microwave-assisted synthesis and photophysical properties. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3325-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Verbitskiy EV, Baskakova SA, Rusinov GL, Charushin VN. New approach to 5-arylamino-4-(5-aryloxyfuran-2-yl)pyrimidines: synthesis and antibacterial activity. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3170-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Perupogu N, Kumar DR, Ramachandran D. Anticancer activity of newly synthesized 1,2,4-Oxadiazole linked 4-(Oxazolo[5,4-d]pyrimidine derivatives. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
7
|
Mohammadi A, Ghasemi Z. A simple pyrimidine based colorimetric and fluorescent chemosensor for sequential detection of copper (II) and cyanide ions and its application in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117730. [PMID: 31718972 DOI: 10.1016/j.saa.2019.117730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 05/25/2023]
Abstract
In this study, a new pyrimidine-based chemosensor (PyrCS) has been developed for sequential detection of copper (II) and cyanide ions. The PyrCS has revealed high sensitivity and selectivity toward copper ion over other metal ions in aqueous media. The PyrCS as an optical probe exhibited a distinct color change and a bathochromic shift in UV spectra in the presence of copper ion in a few seconds due to the formation of stable complex (PyrCS-Cu2+). The results confirmed that the PyrCS has a widely linear detection range of 0.3-30 μM toward Cu2+. The calculated limit of detection for Cu2+ ions was low as 0.116 μM. Moreover, the fluorescent intensity of PyrCS at 507 nm was significantly quenched in the presence of Cu2⁺ and Fe2⁺ ions. Additionally, complex PyrCS-Cu2+ was successfully used to detect cyanide ions via Cu2+ displacement approach. The free PyrCS was recovered after adding the CN‾ ions in a few seconds due to the formation of the stable copper cyanide complex Cu(CN)x. The calculated LOD for CN‾ ions was low as 0.320 μM. The data also clarified that the other competing anions did not create a clear color change in solutions. Since the proposed method could provide a vivid colorimetric response in the presence of detected analytes within the pH range of 3-9, we can claim that the developed chemosensor can be utilized in any physical and biological conditions.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran; Department of Water Engineering and Environment, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Zeinab Ghasemi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
8
|
Verbitskiy EV, Rusinov GL, Charushin VN, Chupakhin ON. Development of new antituberculosis drugs among of 1,3- and 1,4-diazines. Highlights and perspectives. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2686-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
|
10
|
Šlachtová V, Janovská L, Brulíková L. Solid phase synthesis of new thiazolidinedione-pyrimidine conjugates and their antibacterial properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Charushin VN, Chupakhin ON. Nucleophilic C—H functionalization of arenes: a contribution to green chemistry. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2441-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Bai S, Liu S, Zhu Y, Wu Q. Asymmetric synthesis and antiviral activity of novel chiral amino-pyrimidine derivatives. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Synthesis of Some Novel Thiazolo[3,2-a]pyrimidine and Pyrimido[2,1-b][1,3]thiazine Derivatives and their Antimicrobial Evaluation. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Kovalishyn V, Grouleff J, Semenyuta I, Sinenko VO, Slivchuk SR, Hodyna D, Brovarets V, Blagodatny V, Poda G, Tetko IV, Metelytsia L. Rational design of isonicotinic acid hydrazide derivatives with antitubercular activity: Machine learning, molecular docking, synthesis and biological testing. Chem Biol Drug Des 2018. [PMID: 29536635 DOI: 10.1111/cbdd.13188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The problem of designing new antitubercular drugs against multiple drug-resistant tuberculosis (MDR-TB) was addressed using advanced machine learning methods. As there are only few published measurements against MDR-TB, we collected a large literature data set and developed models against the non-resistant H37Rv strain. The predictive accuracy of these models had a coefficient of determination q2 = .7-.8 (regression models) and balanced accuracies of about 80% (classification models) with cross-validation and independent test sets. The models were applied to screen a virtual chemical library, which was designed to have MDR-TB activity. The seven most promising compounds were identified, synthesized and tested. All of them showed activity against the H37Rv strain, and three molecules demonstrated activity against the MDR-TB strain. The docking analysis indicated that the discovered molecules could bind enoyl reductase, InhA, which is required in mycobacterial cell wall development. The models are freely available online (http://ochem.eu/article/103868) and can be used to predict potential anti-TB activity of new chemicals.
Collapse
Affiliation(s)
- Vasyl Kovalishyn
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Julie Grouleff
- Drug Discovery Program, MaRS Centre, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ivan Semenyuta
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Vitaliy O Sinenko
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Sergiy R Slivchuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Diana Hodyna
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Volodymyr Brovarets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | | | - Gennady Poda
- Drug Discovery Program, MaRS Centre, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Igor V Tetko
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,BIGCHEM GmbH, Neuherberg, Germany
| | - Larysa Metelytsia
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Chupakhin ON, Charushin VN. Nucleophilic C–H functionalization of arenes: a new logic of organic synthesis. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0108] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDirect metal-free C–H functionalization of arenes with nucleophiles is a new chapter in the chemistry of aromatics. Comprehensive studies on nucleophilic substitution of hydrogen in arenes (the SNH reactions), including mechanisms, intermediates, mathematic and electrochemical modeling, kinetics, electron-transfer, etc. have shown that this is not the hydride ion, but C–H proton is departed, and this process is facilitated by the presence of an appropriate oxidant or an auxiliary group. The SNH reactions, as a part of the general C–H functionalization concept, change the logic of organic synthesis. They open new opportunities, avoiding incorporation of good leaving groups or other auxiliaries in an aromatic ring, as a prefunctionalization step, thus providing a better correspondence to the principles of green chemistry.
Collapse
Affiliation(s)
- Oleg N. Chupakhin
- Ural Federal Univeristy named after the First President of Russia B.N. Eltsin, Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S.Kovalevskaya/Academicheskaya st. 22/20, 620099 Ekaterinburg, Russia
| | - Valery N. Charushin
- Ural Federal Univeristy named after the First President of Russia B.N. Eltsin, Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S.Kovalevskaya/Academicheskaya st. 22/20, 620099 Ekaterinburg, Russia
| |
Collapse
|
16
|
Verbitskiy EV, Baskakova SA, Gerasimova NA, Evstigneeva NP, Zil'berberg NV, Kungurov NV, Kravchenko MA, Skornyakov SN, Pervova MG, Rusinov GL, Chupakhin ON, Charushin VN. Synthesis and biological evaluation of novel 5-aryl-4-(5-nitrofuran-2-yl)-pyrimidines as potential anti-bacterial agents. Bioorg Med Chem Lett 2017; 27:3003-3006. [DOI: 10.1016/j.bmcl.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/09/2023]
|
17
|
Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 138:501-513. [PMID: 28692915 DOI: 10.1016/j.ejmech.2017.06.051] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/20/2017] [Accepted: 06/25/2017] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) remains one of the most widespread and leading deadliest diseases, threats one-third of the world's population. Although numerous efforts have been undertaken to develop new anti-TB agents, only a handful of compounds have entered human trials in the past 5 decades. Triazoles including 1,2,3-triazole and 1,2,4-triazole are one of the most important classes of nitrogen containing heterocycles that exhibited various biological activities. Triazole derivatives are regarded as a new class of effective anti-TB candidates owing to their potential anti-TB potency. Thus, molecules containing triazole moiety may show promising in vitro and in vivo anti-TB activities and might be able to prevent the drug resistant to certain extent. This review outlines the advances in the application of triazole-containing hybrids as anti-TB agents, and discusses the structure-activity relationship of these derivatives.
Collapse
|
18
|
Fernandes GFDS, Man Chin C, Dos Santos JL. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds. Pharmaceuticals (Basel) 2017; 10:ph10020051. [PMID: 28587160 PMCID: PMC5490408 DOI: 10.3390/ph10020051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), a disease caused mainly by the Mycobacterium tuberculosis (Mtb), is according to the World Health Organization (WHO) the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs) less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
19
|
Wang R, Guan W, Han ZB, Liang F, Suga T, Bi X, Nishide H. Ambient-Light-Promoted Three-Component Annulation: Synthesis of Perfluoroalkylated Pyrimidines. Org Lett 2017; 19:2358-2361. [DOI: 10.1021/acs.orglett.7b00894] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Wang
- College
of Chemistry, Liaoning University, Shenyang 110036, China
- Department
of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wei Guan
- Department
of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zheng-Bo Han
- College
of Chemistry, Liaoning University, Shenyang 110036, China
| | - Fushun Liang
- College
of Chemistry, Liaoning University, Shenyang 110036, China
| | - Takeo Suga
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Xihe Bi
- Department
of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hiroyuki Nishide
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|