1
|
Frater CH, Ruzhnikov MRZ, Beres S, Alcorn D, Shue A, Levy RJ. Ocular features of NGLY1 deficiency from a prospective longitudinal cohort. J AAPOS 2024; 28:103925. [PMID: 38697387 DOI: 10.1016/j.jaapos.2024.103925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND NGLY1 deficiency is a rare autosomal recessive disorder with core features of global developmental delay, liver enzyme abnormalities, movement disorder, polyneuropathy, and hypo- or alacrima. We characterized the full spectrum and evolution of the ocular phenotype in a prospective natural history of NGLY1 deficiency. METHODS We collected ophthalmological data on 29 individuals with NGLY1 deficiency in a natural history study. Medical records were reviewed to confirm caregiver-reported symptoms. Of the 29, 15 participants appeared for at least one ophthalmological examination. RESULTS Caregivers reported at least one ocular sign or symptom in 90% of participants (26/29), most commonly decreased tears, refractive error, and chronic infection. Daily eye medication, including artificial tears, ophthalmic ointment, and topical antibiotics were used by 62%. Ophthalmological examination confirmed refractive errors in 93% (14/15) and corneal abnormalities in 73% (11/15). CONCLUSIONS Given nearly universal hypolacrima and additional prominent ocular findings in NGLY1 deficiency, a targeted ocular history and ophthalmologic examination may facilitate prompt diagnosis and early initiation of preventive eye care, preserving vision and overall ocular health.
Collapse
Affiliation(s)
- Christina H Frater
- Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | - Maura R Z Ruzhnikov
- Neurology and Neurological Sciences, Stanford University, Palo Alto, California; Division of Medical Genetics, Stanford University, Palo Alto, California
| | - Shannon Beres
- Neurology and Neurological Sciences, Stanford University, Palo Alto, California; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Deborah Alcorn
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California; Department of Pediatrics, Stanford University, Palo Alto, California
| | - Ann Shue
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Rebecca J Levy
- Neurology and Neurological Sciences, Stanford University, Palo Alto, California.
| |
Collapse
|
2
|
Liu R, Gu J, Ye Y, Zhang Y, Zhang S, Lin Q, Yuan S, Chen Y, Lu X, Tong Y, Lv S, Chen L, Sun G. A Natural Compound Containing a Disaccharide Structure of Glucose and Rhamnose Identified as Potential N-Glycanase 1 (NGLY1) Inhibitors. Molecules 2023; 28:7758. [PMID: 38067490 PMCID: PMC10707914 DOI: 10.3390/molecules28237758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds. Three natural compounds, Poliumoside, Soyasaponin Bb, and Saikosaponin B2 showed significantly inhibitory activity of NGLY1, isolated from traditional heat-clearing and detoxifying Chinese herbs. Furthermore, the core structural motif of the three NGLY1 inhibitors was a disaccharide structure with glucose and rhamnose, which might exert its action by binding to important active sites of NGLY1, such as Lys238 and Trp244. In traditional Chinese medicine, many compounds containing this disaccharide structure probably targeted NGLY1. This study unveiled the leading compound of NGLY1 inhibitors with its core structure, which could guide future drug development.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Jingjing Gu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yilin Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Yuxin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Shaoxing Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Qiange Lin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Shuying Yuan
- Department of Clinical Laboratory, Jiaxing Maternity and Child Health Care Hospital, Jiaxing 314001, China;
| | - Yanwen Chen
- Central Laboratory, Ningbo Hospital, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo 315336, China;
| | - Xinrong Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Yongliang Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Shaoxian Lv
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Li Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| |
Collapse
|
3
|
Mueller WF, Jakob P, Sun H, Clauder-Münster S, Ghidelli-Disse S, Ordonez D, Boesche M, Bantscheff M, Collier P, Haase B, Benes V, Paulsen M, Sehr P, Lewis J, Drewes G, Steinmetz LM. Loss of N-Glycanase 1 Alters Transcriptional and Translational Regulation in K562 Cell Lines. G3 (BETHESDA, MD.) 2020; 10:1585-1597. [PMID: 32265286 PMCID: PMC7202010 DOI: 10.1534/g3.119.401031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
N-Glycanase 1 (NGLY1) deficiency is an ultra-rare, complex and devastating neuromuscular disease. Patients display multi-organ symptoms including developmental delays, movement disorders, seizures, constipation and lack of tear production. NGLY1 is a deglycosylating protein involved in the degradation of misfolded proteins retrotranslocated from the endoplasmic reticulum (ER). NGLY1-deficient cells have been reported to exhibit decreased deglycosylation activity and an increased sensitivity to proteasome inhibitors. We show that the loss of NGLY1 causes substantial changes in the RNA and protein landscape of K562 cells and results in downregulation of proteasomal subunits, consistent with its processing of the transcription factor NFE2L1. We employed the CMap database to predict compounds that can modulate NGLY1 activity. Utilizing our robust K562 screening system, we demonstrate that the compound NVP-BEZ235 (Dactosilib) promotes degradation of NGLY1-dependent substrates, concurrent with increased autophagic flux, suggesting that stimulating autophagy may assist in clearing aberrant substrates during NGLY1 deficiency.
Collapse
Affiliation(s)
- William F Mueller
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Petra Jakob
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Han Sun
- Stanford University, CA, 94305
| | - Sandra Clauder-Münster
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Diana Ordonez
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Markus Boesche
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Marcus Bantscheff
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Paul Collier
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Bettina Haase
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Vladimir Benes
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Malte Paulsen
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Peter Sehr
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Joe Lewis
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Lars M Steinmetz
- European Molecular Biology Labs, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
- Stanford University, CA, 94305
| |
Collapse
|
4
|
Srinivasan B, Tonddast-Navaei S, Roy A, Zhou H, Skolnick J. Chemical space of Escherichia coli dihydrofolate reductase inhibitors: New approaches for discovering novel drugs for old bugs. Med Res Rev 2018; 39:684-705. [PMID: 30192413 DOI: 10.1002/med.21538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Escherichia coli Dihydrofolate reductase is an important enzyme that is essential for the survival of the Gram-negative microorganism. Inhibitors designed against this enzyme have demonstrated application as antibiotics. However, either because of poor bioavailability of the small-molecules resulting from their inability to cross the double membrane in Gram-negative bacteria or because the microorganism develops resistance to the antibiotics by mutating the DHFR target, discovery of new antibiotics against the enzyme is mandatory to overcome drug-resistance. This review summarizes the field of DHFR inhibition with special focus on recent efforts to effectively interface computational and experimental efforts to discover novel classes of inhibitors that target allosteric and active-sites in drug-resistant variants of EcDHFR.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Ambrish Roy
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Hongyi Zhou
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|