1
|
Zhang ZM, Chen JM, Wang XX, Wang LY, Liu S, Wang J, Wang YN, Zhuang PY, Wang LL, Liu H. Bibenzyl and naphthalene derivatives from Dendrobium chrysanthum and their anti-hepatic-steatosis activities. Bioorg Chem 2024; 145:107236. [PMID: 38402796 DOI: 10.1016/j.bioorg.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
In this study, 16 new compounds, six bibenzyls (1-6) and 10 naphthalenes (7-13), including three pairs of naphthalene enantiomers and three known compounds (14-16), were isolated from Dendrobium chrysanthum. Structurally, compounds 1-5 are previously undescribed dimeric bibenzyls, uniquely linked by unusual carbon bonds. The structures of the compounds were determined using spectroscopy and X-ray crystallography. The screening results indicated that 1, 2, and 5 showed remarkable lipid-lowering activities in FFA-induced HepG2 cells, with EC50 values ranging from 3.13 to 6.57 μM. Moreover, 1, 2, and 5 significantly decreased both the mRNA and protein levels of the target SREBP-1c, and 5 also reduced PPARα mRNA and protein levels. Therefore, 1, 2, and 5 are potential drugs against hepatic steatosis by targeting PPARα or SREBP-1c.
Collapse
Affiliation(s)
- Zi-Mo Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei Province 063210, People's Republic of China
| | - Jin-Ming Chen
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei Province 063210, People's Republic of China
| | - Xiao-Xia Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei Province 063210, People's Republic of China
| | - Ling-Yun Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Shuai Liu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei Province 063210, People's Republic of China
| | - Jing Wang
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210022, People's Republic of China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Peng-Yu Zhuang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei Province 063210, People's Republic of China.
| | - Lu-Lu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China.
| | - Hang Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China.
| |
Collapse
|
2
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Devi M, Kumar P, Singh R, Narayan L, Kumar A, Sindhu J, Lal S, Hussain K, Singh D. A comprehensive review on synthesis, biological profile and photophysical studies of heterocyclic compounds derived from 2,3-diamino-1,4-naphthoquinone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Shinde Y, Patil R, Badireenath Konkimalla V, Merugu SB, Mokashi V, Harihar S, Marrot J, Butcher RJ, Salunke-Gawali S. Keto-enol tautomerism of hydroxynaphthoquinoneoxime ligands: Copper complexes and topoisomerase inhibition activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Shi X, Du TT, Zhang Z, Liu X, Yang Y, Xue N, Jiao X, Chen X, Xie P. (+)-Isocryptotanshinone derivatives and its simplified analogs as STAT3 signaling pathway inhibitors. Bioorg Chem 2022; 127:106015. [PMID: 35849894 DOI: 10.1016/j.bioorg.2022.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022]
Abstract
Isocryptotanshinone (ICTS), a natural product with potential signal transducer and activator of transcription-3 (STAT3) signaling pathway inhibitory activity, shows significant inhibitory activity against several tumors. In this study, a series of ICTS derivatives and simplified analogs containing a 1, 4-naphthoquinone core was designed, synthesized, and evaluated. The results demonstrated that most target compounds were potent STAT3 signaling pathway inhibitors based on their mechanism of inhibition of STAT3 phosphorylation. Moreover, based on the obtained data, the structure-activity relationship (SAR) was rationally deduced. Simultaneously, molecular docking of the compound 16r suggested its possible interaction mode with STAT3. To further verify anticancer activity, all target compounds were tested using HCT116, HepG2, MCF-7, A549, and U251 cell lines. Interestingly, compared with different tumor cell lines, the HCT-116 cell line was determined to be the most sensitive. Furthermore, compounds 21e, 16r, 28a, and 16e showed a dose-dependent inhibition of the growth of HCT116 cells. Thus, the SAR of ICTS derivatives and its simplified analogs was determined, and some of them were discovered to be potential anticancer candidates owing to their ability to inhibit the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiang Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ting Ting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ping Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Kalimuthu AK, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian SRK, Ravishankar V, Ammunje DN, Sampath M, Panneerselvam T, Kunjiappan S. In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48908-48925. [PMID: 35201581 DOI: 10.1007/s11356-022-19249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The main objective of this research work is to discover novel and efficient phytochemical substances from endophytic fungus found in medicinal plants. Curvularia geniculata L. (C. geniculata L.), an endophytic fungus isolated from Phyllanthus niruri L. (P. niruri L.), was tested against hepatoma cell lines (HepG2) in order to screen their antioxidant and anticancer potentials. The profiling of phytochemicals from the fungal extract was characterized using gas chromatography-mass spectrometry (GC-MS), and molecular docking was done for the identified compounds against one of the potential receptors predominantly present in the hepatocellular carcinoma cell lines. Among the phytochemicals found, 2-methyl-7-phenylindole had the highest binding affinity (- 8.8 kcal mol-1) for the epidermal growth factor receptor (EGFR). The stability of 2-methyl-7-phenylindole in the EGFR-binding pockets was tested using in silico molecular dynamics simulation. The fungal extract showed the highest antioxidant activity as measured by DPPH, ABTS radical scavenging, and FRAP assays. In vitro cytotoxicity assay of fungal extract demonstrated the concentration-dependent cytotoxicity against HepG2 cells after 24 h, and the IC50 (50% cell death) value was estimated to be 62.23 μg mL-1. Typical morphological changes such as condensation of nuclei and deformed membrane structures are indicative of ongoing apoptosis. The mitochondria of HepG2 cells were also targeted by the endophytic fungal extract, which resulted in substantial generation of reactive oxygen species (ROS) leading to the destruction of mitochondrial transmembrane potential integrity. These outcomes suggest that the ethyl acetate extract of C. geniculata L. has the potential to be an antioxidant agent and further to be exploited in developing potential anticancer agents.
Collapse
Affiliation(s)
- Arjun Kumar Kalimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Pavadai Parasuraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Pandian Sivakumar
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Vigneshwaran Ravishankar
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Muthukumar Sampath
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi-835215, Mesra, Jharkhand, India
| | - Theivendran Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengodu, 637205, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India.
| |
Collapse
|
7
|
Labbozzetta M, Poma P, Occhipinti C, Sajeva M, Notarbartolo M. Antitumor Effect of Glandora rosmarinifolia (Boraginaceae) Essential Oil through Inhibition of the Activity of the Topo II Enzyme in Acute Myeloid Leukemia. Molecules 2022; 27:molecules27134203. [PMID: 35807446 PMCID: PMC9268258 DOI: 10.3390/molecules27134203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
It was previously shown that the antitumor and cytotoxic activity of the essential oil (EO) extracted from the aerial parts of Glandora rosmarinifolia appears to involve a pro-oxidant mechanism in hepatocellular carcinoma (HCC) and in triple-negative breast cancer (TNBC) cell lines. Its most abundant compound is a hydroxy-methyl-naphthoquinone isomer. Important pharmacological activities, such as antitumor, antibacterial, antifungal, antiviral and antiparasitic activities, are attributed to naphthoquinones, probably due to their pro-oxidant or electrophilic potential; for some naphthoquinones, a mechanism of action of topoisomerase inhibition has been reported, in which they appear to act both as catalytic inhibitors and as topoisomerase II poisons. Our aim was to evaluate the cytotoxic activity of the essential oil on an acute myeloid leukemia cell line HL-60 and on its multidrug-resistant (MDR) variant HL-60R and verify its ability to interfere with topoisomerase II activity. MTS assay showed that G. rosmarinifolia EO induced a decrease in tumor cell viability equivalent in the two cell lines; this antitumor effect could depend on the pro-oxidant activity of EO in both cell lines. Furthermore, G. rosmarinifolia EO reduced the activity of Topo II in the nuclear extracts of HL-60 and HL-60R cells, as inferred from the inability to convert the kinetoplast DNA into the decatenated form and then not inducing linear kDNA. Confirming this result, flow cytometric analysis proved that EO induced a G0-G1 phase arrest, with cell reduction in the S-phase. In addition, the combination of EO with etoposide showed a good potentiation effect in terms of cytotoxicity in both cell lines. Our results highlight the antitumor activity of EO in the HL-60 cell line and its MDR variant with a peculiar mechanism as a Topo II modulator. Unlike etoposide, EO does not cause stabilization of a covalent Topo II-DNA intermediate but acts as a catalytic inhibitor. These data make G. rosmarinifolia EO a potential anticancer drug candidate due to its cytotoxic action, which is not affected by multidrug resistance.
Collapse
|
8
|
Rafat S, Dar MI, Sunita K, Khan S, Verma AK, Ahmad F, Dev K. Therapeutic potential and protective effect against induced ROS and autophagy inhibition of AT101 compound in human breast cancer cell line MCF7. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ubale AS, Londhe GS, Shaikh MA, Gnanaprakasam B. Transition-Metal-Free Alkylative Aromatization of Tetralone Using Alcohol/Amino Alcohol towards the Synthesis of Bioactive Naphthol and Benzo[ e/ g]indole Derivatives. J Org Chem 2022; 87:8104-8117. [PMID: 35612287 DOI: 10.1021/acs.joc.2c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report alkylative aromatization of tetralone for the synthesis of bioactive naphthols and benzo[e/g]indole derivatives using alcohols in the presence of NaOH via an aerobic oxidative cross-coupling protocol. This is a general and transition-metal-free method, which uses an inexpensive base, avoids inert conditions, and furnishes water and hydrogen peroxide as the byproducts. Moreover, this method demonstrated with wide substrate scope and obtained exclusive regioselectivity.
Collapse
Affiliation(s)
- Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Gokul S Londhe
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
10
|
Moutabian H, Majdaeen M, Ghahramani-Asl R, Yadollahi M, Gharepapagh E, Ataei G, Falahatpour Z, Bagheri H, Farhood B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 2022; 22:142. [PMID: 35366874 PMCID: PMC8976963 DOI: 10.1186/s12935-022-02561-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/27/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE 5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treatment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic effects of resveratrol in combination with 5-FU against colorectal cancer. METHODS According to the PRISMA guideline, a comprehensive systematic search was carried out for the identification of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review. RESULTS The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colorectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the cases), except for the inflammatory mediators. CONCLUSION The results obtained from this systematic review demonstrated that co-administration of resveratrol could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle distribution, oxidant, apoptosis, anti-inflammatory effects.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Yadollahi
- Department of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bagher Farhood
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Li P, Zeng Y, Chen Y, Huang P, Chen X, Zheng W. LRP11-AS1 promotes the proliferation and migration of triple negative breast cancer cells via the miR-149-3p/NRP2 axis. Cancer Cell Int 2022; 22:116. [PMID: 35279146 PMCID: PMC8917722 DOI: 10.1186/s12935-022-02536-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Breast cancer is the most commonly diagnosed cancer in women. Triple negative breast cancer (TNBC) is the most difficult subtype of breast cancer to treat due to the deficiency in drug-targetable receptors. LRP11-AS1, a newly identified oncogenic long noncoding RNA (lncRNA) was found to be significantly overexpressed in TNBC cells. The aim of this study is to investigate the malignant roles and the oncogenic mechanisms of LRP11-AS1 in TNBC. Methods CCK-8, colony formation, transwell migration and transwell invasion assays were performed to study the functions of LRP11-AS1. Quantitative PCR and western blot were used to determine the gene expression. Bioinformatics analysis and dual-luciferase reporter assay were conducted to study lncRNA and miRNA interactions. Results LRP11-AS1 was found to be significantly overexpressed in TNBC cells compared to the non-TNBC cells and normal mammary epithelial cells. Knockdown of LRP11-AS1 could inhibit the growth and metastasis of TNBC cells and regulate cell cycle. Mechanistically, LRP11-AS1 was found to act as a competing endogenous RNA (ceRNA) to sponge miR-149-3p. Silencing of LRP11-AS1 increased the expression of miR-149-3p and overexpression of miR-149-3p suppressed the expression of LRP11-AS1. Inhibition of miR-149-3p could reverse the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Moreover, Neuropilin-2 (NRP2) was found to be the target of miR-149-3p. Rescue experiments revealed that NRP2 overexpression could rescue the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Conclusion LRP11-AS1 overexpressed in TNBC showed the oncogenic effects possibly by sponging miR-149-3p and regulating the miR-149-3p/NRP2 axis, which indicated LRP11-AS1 as a potential diagnostic biomarker and therapeutic target in TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02536-8.
Collapse
|
12
|
Liu W, Zheng L, Zhang R, Hou P, Wang J, Wu L, Li J. Circ-ZEB1 promotes PIK3CA expression by silencing miR-199a-3p and affects the proliferation and apoptosis of hepatocellular carcinoma. Mol Cancer 2022; 21:72. [PMID: 35277182 PMCID: PMC8915544 DOI: 10.1186/s12943-022-01529-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although the prognostic outcomes of liver cancer (LC) cases have improved with the advancement in diagnostic technology and treatment methods, the transferability and recurrence of HCC and the 5-year and 10-year survival rates of patients have remained unsatisfactory. As a result, there is a need for more accurate diagnostic indicators that can detect liver cancer early, effectively improving the prognosis of patients. Whole-genome sequencing (WGS) revealed that circ-ZEB1 and PIK3CA are highly expressed in HCC tissues, whereas miR-199a-3p is significantly downregulated in HCC. Multiple databases search and biological analysis revealed that elevated expression of circ-ZEB1 and PIK3CA was related to poor prognosis of HCC. In vitro and in vivo studies revealed that upregulated levels of PIK3CA and circ-ZEB1 were closely associated with HCC proliferation and apoptosis. Based on these results, we believe that circ-ZEB1 and PIK3CA could be used as biomarkers to diagnose and treat patients with HCC. More importantly, circ-ZEB1 can promotes the expression of PIK3CA by silencing miR-199a-3p and affecting the progression of HCC. METHODS AND RESULTS Postoperative specimens from 56 patients with HCC who had not undergone chemotherapy from 2015 to 2018 were collected from the Department of Hepatobiliary Surgery, Second Affiliated Hospital of Nanchang University. WGS revealed differential expression of genes in HCC. Furthermore, RT-qPCR detected the expression of circ-ZEB1, miR-199a-3p, and PIK3CA in HCC tissues. MTT, EdU, and plate cloning experiments were conducted to detect cell proliferation, whereas flow cytometry analysis was used to detect apoptosis. FISH was used to co-localize circ-ZEB1 and miR-199a-3p, and biotin-coupled probe pull-down assay was used to detect the specific binding of circ-ZEB1 and miR-199a-3p. The dual-luciferase report assay detected the association of miR-199a-3p with PIK3CA. Western blotting was used to study the expression of PIK3CA protein. Circ-ZEB1 and PIK3CA were upregulated in HCC and predicted a poor prognosis. MiR-199a-3p showed low expression in HCC, whereas downregulation of circ-ZEB1 reduced HCC cell proliferation and promoted cell apoptosis. MiR-199a-3p blocked the effect of circ-ZEB1 on HCC. Circ-ZEB1 served as a biomarker of HCC. Circ-ZEB1 promoted the expression of PIK3CA by silencing miR-199a-3p to affect the progress of HCC. CONCLUSIONS Circ-ZEB1 promoted the expression of PIK3CA by depleting miR-199a-3p, thereby affecting HCC proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China
| | - Rongguiyi Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Ping Hou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jiakun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
13
|
Yadav P, Iqbal H, Kumar K, Kumar P, Mishra D, Singh A, Pal A, Mukhopadhyay P, Vamadevan B, Singh D, Negi AS, Chanda D. 2-Benzyllawsone protects against polymicrobial sepsis and vascular hyporeactivity in swiss albino mice. Eur J Pharmacol 2022; 917:174757. [PMID: 35032484 DOI: 10.1016/j.ejphar.2022.174757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Novel naphthoquinone, 2-benzyllawsone (LT-9) was evaluated against vascular hyporeactivity and sepsis in cecal ligation and puncture (CLP) model in mice in view of its preliminary antibacterial and anti-inflammatory properties and to explore whether pretreatment with the molecule could restore vascular tone and contractile response to norepinephrine. METHODS Evaluation of LT-9 against vascular hyporeactivity, hypotension, and sepsis-related inflammation and infection was carried out in the CLP model in Swiss albino mice and aortic smooth muscle cells in vitro. RESULTS LT-9 showed potent reversal of the vascular hyporeactivity in CLP mice aorta. The increased contraction response to norepinephrine in CLP mouse aorta by LT-9 was mediated by opening of L-type voltage-dependent calcium channels (VDCC) verified by ex vivo experiment where LT-9 enhanced contraction response to CaCl2 in the aorta while abolishing the contraction response of known VDCC opener Bay K8644. LT-9 in aortic smooth muscle cells showed Fluo-4 mediated increase in calcium fluorescence. Oral administration of LT-9 at 50 and 100 mg kg-1 day-1 for 15 days significantly enhanced the mean survival time, improved hemodynamic and Electrocardiogram (ECG) profile, and aortic tissue reactivity in CLP mice. Further, LT-9 significantly reversed the perturbation of the expression profile of inflammatory cytokines, reduced the splenic microbial load, and was well tolerated in oral toxicity. CONCLUSIONS LT-9 showed potent biological activity against sepsis and was found to be well tolerated in the toxicity study in Swiss albino mice and showed promise for the benzyllawsone class of molecules against sepsis for the development of novel pharmacophore.
Collapse
Affiliation(s)
- Pankaj Yadav
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Hina Iqbal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Kapil Kumar
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Parmanand Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Divya Mishra
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Arjun Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Anirban Pal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Beena Vamadevan
- Regulatory Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Dhirendra Singh
- Regulatory Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Debabrata Chanda
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|
14
|
Wen W, Xu D, Piao Y, Li X. Prognostic value of maximum standard uptake value, metabolic tumour volume, and total lesion glycolysis of 18F-FDG PET/CT in patients with malignant pleural mesothelioma: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:60. [PMID: 35114996 PMCID: PMC8811994 DOI: 10.1186/s12935-022-02482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Present work systematically reviewed relevant literature based on 18F-FDG PET parameters and conducted a meta-analysis to examine the prognostic value of maximal standard uptake value (SUVmax), total lesional glycolysis (TLG), and metabolic tumour volume (MTV) in the prognosis of malignant pleural mesothelioma (MPM). METHODS The relevant literature published in English were searched on PubMed, Cochrane Library, and EMBASE databases. We also evaluated the significance of SUVmax, TLG, and MTV in prognosis prediction using pooled hazard ratios (HRs). RESULTS The current study comprised 12 primary studies with a total of 1307 MPM cases. According to our results, the pooled HR (95% confidence interval [CI]) of increased SUVmax for overall survival (OS) was 1.30 (95% CI 1.13-1.49, P = 0.000), whereas the increased TLG was 1.81(95% CI 1.25-2.61, P = 0.089). The increased MTV was not significantly related to OS (1.14 [95% CI 0.87-1.50, P = 0.18]).However, study design-stratified subgroup analysis suggested that differences in OS of retrospective and prospective subgroups were statistically significant, and no significant heterogeneity among different studies was observed. CONCLUSION Based on the findings from the present work, PET/CT can significantly affect the prognosis prediction in MPM cases. Also, the increased SUVmax and TLG values predict an increased risk of mortality.
Collapse
Affiliation(s)
- Weibo Wen
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China.,Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Yongnan Piao
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|
15
|
El-Zahabi HSA, Nossier ES, Mousa SM, Hassan H, Shalaby ASG, Arafa RK. Antibacterial and anticancer profiling of new benzocaine derivatives: Design, synthesis, and molecular mechanism of action. Arch Pharm (Weinheim) 2022; 355:e2100451. [PMID: 35102593 DOI: 10.1002/ardp.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
The need for new chemotherapeutics to overcome development of resistance merits research to discover new agents. Benzocaine derivatives are essential compounds in medicinal chemistry due to their various biological activities including antibacterial and anticancer activities. Therefore, this study focuses on the synthesis of new benzocaine derivatives 3a-e, 6, 7a and 7b, 8, 10-14, and 16a-d and their in vitro evaluation as antibacterial agents against gram +ve and -ve strains and as anticancer agents against HepG-2, HCT-116, and MCF-7 human cancer cell lines. The obtained results demonstrated that thiazolidines 6 and 7b showed higher antibacterial and anticancer activity in comparison with the reference drugs. In addition, 6 and 7b showed high potency as inhibitors toward their biological targets, that is DNA gyrase and human topoisomerase IIα, as compared to the reference standard drugs novobiocin and etoposide, respectively. Molecular docking demonstrated that both compounds could identify the active site of their target enzymes and develop effective binding interactions. Absorption, distribution, metabolism and elimination (ADME) and drug-likeness predictions of both compounds showed that they both have good ADME profiles and no structural alerts that might cause toxicity. Based on this, 6 and 7b could serve as lead compounds for the design of more potent antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Heba S A El-Zahabi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Safya M Mousa
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt
| | - Al Shimaa G Shalaby
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Center, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
16
|
Hassanien AE, Abd EL-ghani GE, Elbana GG. Synthesis, DFT Studies, and Biological Applications of Some Novel Compounds Containing Lawsone by Using Halo-Reagents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2027792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alaa E. Hassanien
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Basic Science Department, Future Higher Institute of Engineering and Technology in Mansoura, Mansoura, Egypt
| | | | - Ghada G. Elbana
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Mansoura University Student Hospital, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Singh A, Basu A, Sharma A, Priya A, Kaur M, Kaur G, Banerjee B. Lawsone (2-hydroxy-1,4-naphthaquinone) derived anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
2-Hydroxy-1,4-naphthaquinone, commonly known as lawsone, represents an extremely important biologically active naturally occurring compound. It can easily be isolated from Lawsonia inermis (henna) tree leaf extract. Last decade has seen tremendous applications of lawsone as a starting component for the preparation of various organic scaffolds. Many of these synthesized scaffolds showed a wide range of biological activities including potential activities towards several cancer cell lines. This review deals with diverse synthetic methods of lawsone derived scaffolds and their screening against different anti-cancer cell lines along with promising results.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Amartya Basu
- Department of General Medicine , Kalinga Institute of Medical Sciences , Bhubaneswar , Odisha 751024 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Manmmet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Gurpreet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Bubun Banerjee
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
18
|
Lemos BC, Westphal R, Filho EV, Fiorot RG, Carneiro JWM, Gomes ACC, Guimarães CJ, de Oliveira FCE, Costa PMS, Pessoa C, Greco SJ. Synthetic enamine naphthoquinone derived from lawsone as cytotoxic agents assessed by in vitro and in silico evaluations. Bioorg Med Chem Lett 2021; 53:128419. [PMID: 34715305 DOI: 10.1016/j.bmcl.2021.128419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
We synthesized ten enamine naphthoquinones with yields ranging from 43 to 76%. These compounds were screened for their in vitro antiproliferative activities by MTT assay against four types of human cancer cell lines: HCT116, PC3, HL60 and SNB19. The naphthoquinones bearing the picolylamine (7) and quinoline (12) moieties were the most actives (IC50 < 24 μM for all the cell lines), which were comparable or better to the values obtained for the control drugs. In silico evaluations allowed us to develop a qualitative Structure-Activity Relationship which suggest that electrostatic features, particularly the C2-C3 internuclear repulsion and the molecular dipole moment, relate to the biological response. Furthermore, Molecular Docking simulations indicate that the synthetic compounds have the potential to act as anticancer molecules by inhibiting topoisomerase-II and thymidylate synthase.
Collapse
Affiliation(s)
- Bárbara C Lemos
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Regina Westphal
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Eclair Venturini Filho
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Rodolfo G Fiorot
- Chemistry Institute, Federal Fluminense University, Outeiro de São João Batista, 24020-141 Niteroi, RJ, Brazil
| | - José Walkimar M Carneiro
- Chemistry Institute, Federal Fluminense University, Outeiro de São João Batista, 24020-141 Niteroi, RJ, Brazil
| | - Anne Caroline C Gomes
- Faculty of Pharmacy, Federal Institute of Rio de Janeiro, Campus Realengo, Rio de Janeiro CEP.: 21715-000, Brazil
| | - Celina J Guimarães
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará., Fortaleza, Ceará CEP.: 60430-275, Brazil; Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Fátima C E de Oliveira
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Pedro Mikael S Costa
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Claudia Pessoa
- Pharmacy Sector, Foundation of Oncology Control of the state of Amazonas, Manaus, Amazonas CEP.: 69040-010, Brazil
| | - Sandro J Greco
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil.
| |
Collapse
|
19
|
Rinaldi-Neto F, Ribeiro AB, Ferreira NH, Squarisi IS, Oliveira KM, Orenha RP, Parreira RLT, Batista AA, Tavares DC. Anti-melanoma effect of ruthenium(II)-diphosphine complexes containing naphthoquinone ligand. J Inorg Biochem 2021; 222:111497. [PMID: 34090039 DOI: 10.1016/j.jinorgbio.2021.111497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
The use of natural products as potential ligands has been explored as a strategy in the development of metal-based chemotherapy. Since ruthenium complexes are promising alternatives to traditional antitumor agents, this study evaluated the anti-melanoma potential of two ruthenium(II) complexes containing the naphthoquinone ligands lapachol (lap), [Ru(lap)(dppm)2]PF6, and lawsone (law), [Ru(law)(dppm)2]PF6, in addition to the bis(diphenylphosphino)methane (dppm) ligand, referred to as complexes (1) and (2), respectively, using a syngeneic murine melanoma model. Activation of the apoptotic pathway by the treatments was assessed by immunohistochemistry in tumor tissue. Additionally, toxicity of the treatments was evaluated by variation in body and organ weight, quantification of biochemical indicators of renal damage, and genotoxicity in bone marrow and hepatocytes. First, the antiproliferative activity of (1) and (2) was observed in B16F10 cells, with IC50 values of 2.78 and 1.68 μM, respectively. The results obtained in mice showed that, unlike complex (1), (2) possesses significant anti-melanoma activity demonstrated by a reduction in tumor volume and mass (88.42%), as well as in mitosis frequency (83.86%). Additionally, complex (2) increased the levels of cleaved caspase-3, inducing tumor cell apoptosis. When compared to the metallodrug cisplatin, complex (2) exhibited similar anti-melanoma activity and lower toxicity considering all parameters evaluated. In silico studies demonstrated no difference in the binding energy of the naphthoquinone complex between complexes (1) and (2). However, the complex containing the lawsone ligand has a lower molar volume, which may be important for interactions with minor DNA grooves. The present results demonstrate the antitumor efficiency of complex (2) and a significantly lower systemic toxicity compared to cisplatin.
Collapse
Affiliation(s)
- Francisco Rinaldi-Neto
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Arthur Barcelos Ribeiro
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Natália Helen Ferreira
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Iara Silva Squarisi
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Kátia Mara Oliveira
- Universidade Federal de São Carlos, Departamento de Química, Rodovia Washington Luis s/n Km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Renato Pereira Orenha
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Renato Luís Tame Parreira
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Alzir Azevedo Batista
- Universidade Federal de São Carlos, Departamento de Química, Rodovia Washington Luis s/n Km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Denise Crispim Tavares
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil.
| |
Collapse
|
20
|
Synthesis and Antiparasitic Activity of New Conjugates—Organic Drugs Tethered to Trithiolato-Bridged Dinuclear Ruthenium(II)–Arene Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9080059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tethering known drugs to a metalorganic moiety is an efficient approach for modulating the anticancer, antibacterial, and antiparasitic activity of organometallic complexes. This study focused on the synthesis and evaluation of new dinuclear ruthenium(II)–arene compounds linked to several antimicrobial compounds such as dapsone, sulfamethoxazole, sulfadiazine, sulfadoxine, triclosan, metronidazole, ciprofloxacin, as well as menadione (a 1,4-naphtoquinone derivative). In a primary screen, 30 compounds (17 hybrid molecules, diruthenium intermediates, and antimicrobials) were assessed for in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in noninfected host cells (human foreskin fibroblasts, HFF) was determined by an alamarBlue assay. When assessed at 1 µM, five compounds strongly impaired parasite proliferation by >90%, and HFF viability was retained at 50% or more, and they were further subjected to T. gondii β-gal dose-response studies. Two compounds, notably 11 and 13, amide and ester conjugates with sulfadoxine and metronidazole, exhibited low IC50 (half-maximal inhibitory concentration) values 0.063 and 0.152 µM, and low or intermediate impairment of HFF viability at 2.5 µM (83 and 64%). The nature of the anchored drug as well as that of the linking unit impacted the biological activity.
Collapse
|
21
|
Dias GG, Paz ERS, Nunes MP, Carvalho RL, Rodrigues MO, Rodembusch FS, da Silva Júnior EN. Imidazoles and Oxazoles from Lapachones and Phenanthrene-9,10-dione: A Journey through their Synthesis, Biological Studies, and Optical Applications. CHEM REC 2021; 21:2702-2738. [PMID: 34170622 DOI: 10.1002/tcr.202100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Diverse structural frameworks are found in natural compounds and are well known for their chemical and biological properties; such compounds include the imidazoles and oxazoles. Researchers worldwide are continually working on the development of methods for synthesizing new molecules bearing these basic moiety and evaluating their properties and applications. To expand the knowledge related to azoles, this review summarizes important examples of imidazole and oxazole derivatives from 1,2-dicarbonyl compounds, such as lapachones and phenanthrene-9,10-diones, not only regarding their synthesis and biological applications but also their photophysical properties and uses. The data concerning the latter are particularly scarce in the literature, which leads to underestimation of the potential applications that can be envisaged for these compounds.
Collapse
Affiliation(s)
- Gleiston G Dias
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Esther R S Paz
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Marieli O Rodrigues
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Fabiano S Rodembusch
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Eufrânio N da Silva Júnior
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
22
|
Gholampour M, Seradj H, Pirhadi S, Khoshneviszadeh M. Novel 2-amino-1,4-naphthoquinone hybrids: Design, synthesis, cytotoxicity evaluation and in silico studies. Bioorg Med Chem 2020; 28:115718. [PMID: 33065435 DOI: 10.1016/j.bmc.2020.115718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
In the present work, a novel series of 2-amino-1,4-naphthoquinones bearing oxyphenyl moiety (5a-5m) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against three different cancer cell lines (MCF-7, HL-60 and U937) and normal human cell line (HEK-293) by MTT assay. Compounds 5b (4-nitro-benzyl-) and 5k (4-bromo-benzyl-) were identified to possess the highest cytotoxic activity against MCF-7 cancerous cells (IC50 values of 27.76 and 27.86 μM, respectively). At the same time, none of the compounds exert significant toxicity against HEK-293 normal human kidney cells. Cell cycle analysis showed that the selected derivatives increased the population of MCF-7 cells in the S phase at 25 and 50 μM concentrations. Annexin V-FITC/PI staining assay also confirmed that compounds 5b and 5k induced apoptosis in the cell death pathway. Molecular docking and molecular dynamics studies were also performed to evaluate the probable interactions between the hybrids and human ATP binding domain of topo IIα protein. Our findings may provide new insight for further development of novel naphthoquinone-containing compounds.
Collapse
Affiliation(s)
- Maryam Gholampour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Pharmacognosy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Cavalcanti Chipoline I, Carolina Carvalho da Fonseca A, Ribeiro Machado da Costa G, Pereira de Souza M, Won-Held Rabelo V, de Queiroz LN, Luiz Ferraz de Souza T, Cardozo Paes de Almeida E, Alvarez Abreu P, Pontes B, Francisco Ferreira V, de Carvalho da Silva F, Robbs BK. Molecular mechanism of action of new 1,4-naphthoquinones tethered to 1,2,3-1H-triazoles with cytotoxic and selective effect against oral squamous cell carcinoma. Bioorg Chem 2020; 101:103984. [DOI: 10.1016/j.bioorg.2020.103984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
|
24
|
Ourhzif EM, Decombat C, Abrunhosa-Thomas I, Delort L, Khouili M, Akssira M, Caldefie-Chezet F, Chalard P, Troin Y. Synthesis and Biological Evaluation of New Naphthoquinones Derivatives. Curr Org Synth 2020; 17:224-229. [DOI: 10.2174/1570179417666200212111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023]
Abstract
:
New substituted 1,4-naphthoquinones have been prepared in good overall yields through the
naphthol route. The cytotoxicity of these compounds was tested in vitro on MCF-7 breast tumor cells. The
most active compound 14 displayed an IC50 of 15μM.
Objective:
To investigate the cytotoxicity of new naphthoquinones derivatives on MCF-7 cells.
Methods:
Synthesis of new naphtoquinones derivatives and in vitro evaluation of their cytotoxicity on MCF-7
cells (rezasurin cell-based assay).
Results:
Starting from Ethyl 4-hydroxy-6,7-dimethoxy-2-naphthoate, four naphthoquinones were prepared and
exhibited substantial cytotoxicity against MCF-7 cells.
Conclusion:
Preliminary studies of the structure-activity relationship have shown the influence of the structural
parameters and, in particular, the nature of the naphthoquinone side chain.
Collapse
Affiliation(s)
- El-Mahdi Ourhzif
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Laetitia Delort
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Mostafa Khouili
- Universite Sultan Moulay Slimane, FST, Laboratoire de Chimie Organique et Analytique, BP 523 Beni-Mellal, Morocco
| | - Mohamed Akssira
- Universite Hassan II Casablanca, FST, Laboratoire de Chimie Physique et Chimie Bio organique BP 146,28800 Mohammedia, Morocco
| | - Florence Caldefie-Chezet
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Pierre Chalard
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Yves Troin
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
25
|
Nariya P, Shukla F, Vyas H, Devkar R, Thakore S. Synthesis and characterization of Mannich bases of lawsone and their anticancer activity. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1755440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Pratik Nariya
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Falguni Shukla
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Hitarthi Vyas
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
26
|
Design, synthesis and biological evaluation of novel perimidine o-quinone derivatives as non-intercalative topoisomerase II catalytic inhibitors. Bioorg Chem 2019; 91:103131. [DOI: 10.1016/j.bioorg.2019.103131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022]
|
27
|
Gokmen Z, Onan ME, Deniz NG, Karakas D, Ulukaya E. Synthesis and investigation of cytotoxicity of new N- and S,S-substituted-1,4-naphthoquinone (1,4-NQ) derivatives on selected cancer lines. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1655057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zeliha Gokmen
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Erdi Onan
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nahide Gulsah Deniz
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istinye University, Istanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medical School, Istinye University, Istanbul, Turkey
| |
Collapse
|
28
|
Chinta RVRN, Aradhyula BPR, Murali AC, Venkatasubbaiah K. Synthesis, photophysical and electrochemical properties of naphthaldimine based boron complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019; 179:863-915. [PMID: 31306817 DOI: 10.1016/j.ejmech.2019.06.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023]
Abstract
Naphthoquinones are of key importance in organic synthesis and medicinal chemistry. In the last few years, various synthetic routes have been developed to prepare bioactive compounds derived or based on lapachones. In this sense, this review is mainly focused on the synthetic aspects and strategies used for the design of these compounds on the basis of their biological activities for the development of drugs against the neglected diseases leishmaniases and Chagas disease and also cancer. Three strategies used to develop bioactive quinones are discussed and categorized: (i) C-ring modification, (ii) redox centre modification and (iii) A-ring modification. Framed within these strategies for the development of naphthoquinoidal compounds against T. cruzi. Leishmania and cancer, reactions including copper-catalyzed azide-alkyne cycloaddition (click chemistry), palladium-catalysed cross couplings, C-H activation reactions, Ullmann couplings and heterocyclisations reported up to July 2019 will be discussed. The aim of derivatisation is the generation of novel molecules that can potentially inhibit cellular organelles/processes, generate reactive oxygen species and increase lipophilicity to enhance penetration through the plasma membrane. Modified lapachones have emerged as promising prototypes for the development of drugs against leishmaniases, Chagas disease and cancer.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| | - Guilherme A M Jardim
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Solange L de Castro
- Laboratory of Cell Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| |
Collapse
|
30
|
Li K, Yang K, Zheng L, Li Y, Wang Q, Lin R, He D. Anti-acute myeloid leukemia activity of 2-chloro-3-alkyl-1,4-naphthoquinone derivatives through inducing mtDNA damage and GSH depletion. Bioorg Med Chem 2018; 26:4191-4200. [DOI: 10.1016/j.bmc.2018.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
|
31
|
Poma P, Labbozzetta M, Notarbartolo M, Bruno M, Maggio A, Rosselli S, Sajeva M, Zito P. Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil. PLoS One 2018; 13:e0196947. [PMID: 29723282 PMCID: PMC5933692 DOI: 10.1371/journal.pone.0196947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell lines (HA22T/VGH, HepG2, Hep3B) and triple negative breast cancer cell lines (SUM 149, MDA-MB-231). In the essential oil we detected 35 compounds. The results of the biological assays indicate that essential oil of G. rosmarinifolia induces cell growth inhibition at concentration-dependent way in all cell line models. This oil does not seem to possess antioxidant activity, while the cytotoxicity of G. rosmarinifolia essential oil appeared to involve, at least in part, a pro-oxidant mechanism. Our results show for the first time the antitumoral and pro-oxidant activities of G. rosmarinifolia essential oil and suggest that it may represent a resource of pharmacologically active compounds.
Collapse
Affiliation(s)
- Paola Poma
- Department of Health Sciences and Mother and Child Care ‘G. D'Alessandro’(PROSAMI), Pharmacology Unit, University of Palermo, Palermo, Italy
| | - Manuela Labbozzetta
- Department of Health Sciences and Mother and Child Care ‘G. D'Alessandro’(PROSAMI), Pharmacology Unit, University of Palermo, Palermo, Italy
| | - Monica Notarbartolo
- Department of Health Sciences and Mother and Child Care ‘G. D'Alessandro’(PROSAMI), Pharmacology Unit, University of Palermo, Palermo, Italy
- * E-mail: (MB); (MS); (MN)
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
- * E-mail: (MB); (MS); (MN)
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Sergio Rosselli
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Maurizio Sajeva
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
- * E-mail: (MB); (MS); (MN)
| | - Pietro Zito
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
32
|
Ogata T, Kimachi T. Construction of Cyclic Ether-Fused Tricyclic Naphthoquinone Derivatives by Intramolecular Cyclization Reaction. HETEROCYCLES 2018. [DOI: 10.3987/rev-18-sr(t)2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. Eur J Med Chem 2017; 144:572-581. [PMID: 29289882 DOI: 10.1016/j.ejmech.2017.12.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 11/23/2022]
Abstract
The limited efficacy of benznidazole (Bz) indicated by failures of current Phase II clinical trials emphasizes the urgent need to identify new drugs with improved safety and efficacy for treatment of Chagas disease (CD). Herein, we analyzed the efficacy of a series of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against different Trypanosoma cruzi discrete type units (DTUs) of relevant clinical forms of CD. Cytotoxic and trypanocidal effect of naphthoquinone derivatives were assessed in mammalian cells, trypomastigotes and intracellular amastigotes using, luminescent assays (CellTiter-Glo and T. cruzi Dm28c-luciferase) and/or counting with a light microscope. Reactive oxygen species (ROS) production and intracellular targets of promising compounds were assessed with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) probe and ultrastructural analysis, respectively. ADMET properties were analyzed by in silico modeling. Most of the compounds showed low cytotoxic effect. Only two compounds (Compounds 2 and 11) had IC50 values lower than Bz, showing higher susceptibility of bloodstream trypomastigotes. Compound 2 exhibited greater efficacy against trypomastigotes from different T. cruzi DTUs, even better than Bz against Brazil and CL strains. Ultrastructural analysis revealed changes in intracellular compartments, suggesting autophagy as one possible mechanism of action. Oxidative stress, induced by Compound 2, resulted in elevated level of ROS, leading to parasite death. Compound 2 was also effective against intracellular amastigotes, showing high selectivity index. ADMET analysis predicted good oral bioavailability, reduced drug metabolism and no carcinogenic potential for Compound 2. The data highlight Compound 2 as a hit compound and stimulate further structural and pharmacological optimization to potentiate its trypanocidal activity and selectivity.
Collapse
|
34
|
Sim J, Jo H, Viji M, Choi M, Jung JA, Lee H, Jung JK. Rapid, Operationally Simple, and Metal-free NBS Mediated One-pot Synthesis of 1,2-Naphthoquinone from 2-Naphthol. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Hyeju Jo
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Minho Choi
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Jin-Ah Jung
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| |
Collapse
|
35
|
Mahalapbutr P, Chusuth P, Kungwan N, Chavasiri W, Wolschann P, Rungrotmongkol T. Molecular recognition of naphthoquinone-containing compounds against human DNA topoisomerase IIα ATPase domain: A molecular modeling study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Li ZZ, Gopala L, Tangadanchu VKR, Gao WW, Zhou CH. Discovery of novel nitroimidazole enols as Pseudomonas aeruginosa DNA cleavage agents. Bioorg Med Chem 2017; 25:6511-6522. [DOI: 10.1016/j.bmc.2017.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
|
37
|
Concise synthesis of the bioactive natural polyhydroxynaphthoate parvinaphthol B via Hauser-Kraus annulation. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|