1
|
Massoud SS, Mautner FA, Louka FR, Salem NMH, Fischer RC, Torvisco A, Vančo J, Belza J, Dvořák Z, Trávníček Z. Structurally diverse zinc(II) complexes containing tripodal tetradentate phenoxido-amines with promising antiproliferative effects. Dalton Trans 2024; 53:12261-12280. [PMID: 38980002 DOI: 10.1039/d4dt00942h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Structurally diverse zinc(II) complexes with tripodal tetradentate phenolic-amines of variable substituents in the phenol and amine moieties were synthesized and thoroughly characterized. The two dinuclear [Zn2(L1)2](ClO4)2·MeOH (1), [Zn2(L2)2](ClO4)2 (2), and four mononuclear [Zn(L3)(H2O)]·MeOH (3), [Zn(L4)] (4), [Zn(L5)] (5) and [Zn(L6)] (6) complexes revealed distorted octahedral, trigonal-bipyramidal or tetrahedral geometries. The free HL1 and H2L3-6 ligands, and complexes 1-6 were evaluated for in vitro cytotoxicity against human cancer cell lines (A2780, A2780R, PC-3 and 22Rv1) and normal healthy MRC-5 cells. Overall results revealed high-to-moderate cytotoxicity (with the best IC50 values for complex 6 ranging from 2.4 to 4.5 μM), which is however, significantly higher than that of the reference drug cisplatin. The moderately active complexes 1-4 showed considerable selectivity on A2780 cells (IC50 ≈ 16.3-19.5 μM) over MRC-5 ones (with IC50 >50 μM for 1, 2 and 4, and with IC50 >25 μM for 3). The complexes 1, 2, and 6 and the ligand H2L6 were chosen for subsequent deeper biological evaluations. Their time-resolved cellular uptake and other cellular effects in A2780 cells were studied, such as cell cycle profile, intracellular ROS production, induction of apoptosis and activation of caspases 3/7. Complexes 1 and 2 caused significant G0/G1 cell cycle arrest in A2780 cells and antioxidant effects at normal conditions. They showed only limited effects on cellular processes connected with cytotoxicity, i.e. induction of apoptosis, depletion of mitochondrial membrane potential, and autophagy. These findings can be at least partly attributed to the low ability of the complexes to enter the A2780 cells and the depression of metabolic activity of the target cancer cells.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010, Graz, Austria.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
| | - Nahed M H Salem
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Ana Torvisco
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Tomczyk MD, Kuźnik N, Walczak K. Cyclen-based artificial nucleases: Three decades of development (1989–2022). Part a – Hydrolysis of phosphate esters. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Liao S, Yuk N, Kim YJ, Xu H, Li X, Wang L, Liu Y, Jung HJ. Novel terpestacin derivatives with l-amino acid residue as anticancer agents against U87MG-derived glioblastoma stem cells. Bioorg Chem 2023; 132:106392. [PMID: 36709667 DOI: 10.1016/j.bioorg.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Based on the natural product terpestacin, seventeen derivatives (1-17) with various l-amino acid side chains were designed and synthesized. Their anticancer activities against U87MG-derived glioblastoma stem cells (GSCs) were evaluated, and compounds 5, 11, 13 and 15 showed strong abilities to inhibit the proliferation (IC50 = 2.8-6.9 μM) and tumorsphere formation of GSCs. Besides, compounds 13 and 15 could effectively induce apoptosis and significantly inhibit the invasion of GSCs (95 and 97 % inhibition, respectively, at 2.5 μM). The levels of CD133 marker in GSCs also decreased in dose-dependent manners after the treatment of these active compounds. Compared to terpestacin and the positive control A1938, our derivatives showed stronger activities and compounds 13 and 15 are promising candidates for further development as anticancer agents by targeting GSCs.
Collapse
Affiliation(s)
- Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nayeong Yuk
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| | - Yu Jin Kim
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| | - Huayan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaolin Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Center for Marine Microbes, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hye Jin Jung
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea.
| |
Collapse
|
4
|
Synthesis, characterization, and anticancer activity of mononuclear Schiff-base metal complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Characterization of Zinc(II) Complex of 1,4,7,10-Tetrazacyclododecane and Deprotonated 5-Fluorouracil (FU) in Crystalline/Solution States and Evaluation of Anticancer Activity: Approach for Improving the Anticancer Activity of FU. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
7
|
Srivastava A, Naik RM, Rai J, Kumar I, Yaseen B, Gangwar C. Kinetic study of Hg(
II
)‐promoted substitution of cyanide from hexacyanoferrate(
II
) in an anionic surfactant medium by 2,2′‐bipyridine. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Radhey Mohan Naik
- Department of Chemistry Lucknow University Lucknow Uttar Pradesh India
| | - Jyoti Rai
- Department of Chemistry Lucknow University Lucknow Uttar Pradesh India
| | - Indresh Kumar
- Department of Chemistry Lucknow University Lucknow Uttar Pradesh India
| | - Bushra Yaseen
- Department of Chemistry Lucknow University Lucknow Uttar Pradesh India
| | - Chinky Gangwar
- Department of Chemistry Lucknow University Lucknow Uttar Pradesh India
| |
Collapse
|
8
|
Condé CASR, De Almeida MV, Da Silva GDS, Sodré MBPDA, Rodrigues JCF, Navarro M. Synthesis, characterization and antileishmanial activity of copper(II) and zinc(II) complexes with diamine ligands. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Esmaeilzadeh J, Mardani Z, Moeini K, Carpenter-Warren C, Slawin AMZ, Woollins JD. COORDINATION OF AN AMINO ALCOHOLIC SCHIFF BASE LIGAND TOWARD THE ZINC(II) ION: SPECTRAL, STRUCTURAL, THEORETICAL, AND DOCKING STUDIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476621130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Guk DA, Krasnovskaya OO, Beloglazkina EK. Coordination compounds of biogenic metals as cytotoxic agents in cancer therapy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the data on the structures and methods for the synthesis of compounds with anticancer activity based on biogenic metals, which can replace platinum drugs prevailing in cytotoxic therapy. The main focus is given to the comparison of the mechanisms of the cytotoxic action of these complexes, their efficacy and prospects of their use in clinical practice. This is the first systematic review of cytotoxic zinc, iron, cobalt and copper compounds. The structure – activity relationships and the mechanisms of antitumour action are formulated for each type of metal complexes.
The bibliography includes 181 references.
Collapse
|
11
|
Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Saghatforoush L, Hosseinpour S, Moeini K, Mardani Z, Bezpalko MW, Scott Kassel W. INVESTIGATION OF THE BINDING ABILITY
OF A NEW THIOSEMICARBAZONE-BASED LIGAND
AND ITS Zn(II) COMPLEX TOWARD PROTEINS AND DNA: SPECTRAL, STRUCTURAL, THEORETICAL, AND DOCKING STUDIES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Porchia M, Pellei M, Del Bello F, Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules 2020; 25:E5814. [PMID: 33317158 PMCID: PMC7763991 DOI: 10.3390/molecules25245814] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.
Collapse
Affiliation(s)
| | - Maura Pellei
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy;
| | - Carlo Santini
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| |
Collapse
|
14
|
Qiao H, Bai YL, Zhao Y, Xing F, Li MX, Zhu S. Acetocatechol functionalized viologen as polyfunctional material that responds to anion, cation and reductant in aqueous and organic solvents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Panyushkin VT, Volynkin VA, Lindt DA, Tsaturyan SP, Dzhabrailova LK, Shamsutdinova MK, Aksenov NA. On the Structure of Zinc(II) Coordination Compounds with L-Histidine. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Effective anticancer activities of an acyclic symmetrical compartmental Schiff base ligand and its Co(II), Cu(II) and Zn(II) complexes against the human leukemia cell line K562. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking. Bioorg Chem 2019; 87:252-264. [PMID: 30908968 DOI: 10.1016/j.bioorg.2019.03.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
A novel series of amino acids conjugated quinazolinone-Schiff's bases were synthesized and screened for their in vitro anticancer activity and validated by molecular docking and DNA binding studies. In the present investigations, compounds 32, 33, 34, 41, 42 and 43 showed most potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to doxorubicin and ethidium bromide as a positive control respectively. The structure-activity relationship (SAR) revealed that the tryptophan and phenylalanine derived electron donating groups (OH and OCH3) favored DNA binding studies and anticancer activity whereas; electron withdrawing groups (Cl, NO2, and F) showed least anticancer activity. The molecular docking study, binding interactions of the most active compounds 33, 34, 42 and 43 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed.
Collapse
|
18
|
Cadavid-Vargas JF, Villa-Pérez C, Ruiz MC, León IE, Valencia-Uribe GC, Soria DB, Etcheverry SB, Di Virgilio AL. 6-Methoxyquinoline complexes as lung carcinoma agents: induction of oxidative damage on A549 monolayer and multicellular spheroid model. J Biol Inorg Chem 2019; 24:271-285. [PMID: 30701359 DOI: 10.1007/s00775-019-01644-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
The aim of this work was to study the antitumor effects and the mechanisms of toxic action of a series of 6-methoxyquinoline (6MQ) complexes in vitro. The Cu(II) and Zn(II) complexes (Cu6MQ and Zn6MQ) are formulated as M(6MQ)2Cl2; the Co(II) and Ag(I) compounds (Co6MQ and Ag6MQ) are ionic with formulae [Ag(6MQ)2]+NO3- and H(6MQ)+[Co(6MQ)Cl3]- (where H(6MQ)+ is the protonated ligand). We found that the copper complex, outperformed the Co(II), Zn(II) and Ag(I) complexes with a lower IC50 (57.9 µM) in A549 cells exposed for 24 h. Cu6MQ decreased cell proliferation and induced oxidative stress detected with H2DCFDA at 40 µM, which reduces GSH/GSSG ratio. This redox imbalance induced oxidative DNA damage revealed by the Micronucleus test and the Comet assay, which turned into a cell cycle arrest at G2/M phase and induced apoptosis. In multicellular spheroids, the IC50 values tripled the monolayer model (187.3 µM for 24 h). At this concentration, the proportion of live/dead cells diminished, and the spheroids could not proliferate or invade. Although Zn6MQ also decreased GSH/GSSG ratio from 200 µM and the cytotoxicity is related to oxidative stress, the induction of the hydrogen peroxide levels only doubled the control value. Zn6MQ induced S phase arrest, which relates with the increased micronucleus frequency and with the induction of necrosis. Finally, our results reveal a synergistic activity with a 1:1 ratio of both complexes in the monolayer and multicellular spheroids.
Collapse
Affiliation(s)
- J F Cadavid-Vargas
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - C Villa-Pérez
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - M C Ruiz
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - I E León
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - G C Valencia-Uribe
- GIAFOT, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia
| | - D B Soria
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - S B Etcheverry
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - A L Di Virgilio
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina. .,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
19
|
Andrew FP, Ajibade PA. Synthesis, characterization and anticancer studies of bis-(N-methyl-1-phenyldithiocarbamato) Cu(II), Zn(II), and Pt(II) complexes: single crystal X-ray structure of the copper complex. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1489537] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fartisincha P. Andrew
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
20
|
Neelakantan M, Balakrishnan C, Balamurugan K, Mariappan S. Zinc(II)-N 2
O 2
ligation complex-based DNA/protein binder and cleaver having enhanced cytotoxic and phosphatase activity. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M.A. Neelakantan
- Chemistry Research Centre; National Engineering College; K. R. Nagar, Kovilpatti - 628 503 Thoothukudi District Tamil Nadu India
| | - C. Balakrishnan
- Chemistry Research Centre; National Engineering College; K. R. Nagar, Kovilpatti - 628 503 Thoothukudi District Tamil Nadu India
| | - K. Balamurugan
- Chemistry Research Centre; National Engineering College; K. R. Nagar, Kovilpatti - 628 503 Thoothukudi District Tamil Nadu India
| | - S.S. Mariappan
- Chemistry Research Centre; National Engineering College; K. R. Nagar, Kovilpatti - 628 503 Thoothukudi District Tamil Nadu India
| |
Collapse
|
21
|
Zhao W, Liu L, Jia Y, Yuan H, Pan L, He L, Xiang G, Jiang X, Zhang S. Investigation of the retention characteristics of a 26-membered aromatic-aliphatic azamacrocycle bonded silica gel stationary phase for high performance liquid chromatography. NEW J CHEM 2018. [DOI: 10.1039/c7nj03648e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 26-membered aromatic-aliphatic azamacrocycle bonded silica gel stationary phase for high performance liquid chromatography was prepared and characterized.
Collapse
Affiliation(s)
- Wenjie Zhao
- School of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Longhui Liu
- School of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Yunzhen Jia
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou
- P. R. China
| | - Hang Yuan
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lining Pan
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou
- P. R. China
| | - Lijun He
- School of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Guoqiang Xiang
- School of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Xiuming Jiang
- School of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
22
|
Samutprasert P, Chiablaem K, Teeraseranee C, Phaiyarin P, Pukfukdee P, Pienpinijtham P, Svasti J, Palaga T, Lirdprapamongkol K, Wanichwecharungruang S. Epigallocatechin gallate-zinc oxide co-crystalline nanoparticles as an anticancer drug that is non-toxic to normal cells. RSC Adv 2018; 8:7369-7376. [PMID: 35539101 PMCID: PMC9078484 DOI: 10.1039/c7ra10997k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Decreased uptake and cellular accumulation of zinc is a common characteristic in cancer of the liver, pancreas and prostate, because these malignant cells are intolerant to the physiological concentrations of zinc. A tea polyphenol, epigallocatechin-3-gallate (EGCG), can enhance the cytotoxicity of zinc ions to cancer, but the application of this is limited by the low stability of EGCG. In this work, we have prepared a material that can simultaneously preserve the EGCG stability and facilitate zinc uptake and accumulation in cancer cells, under conditions that are not harmful to normal cells. Thus, we co-crystallize zinc oxide with EGCG to obtain hybrid EGCG-ZnO crystalline nanoparticles of 16.5 ± 5.3 nm in diameter. The EGCG-ZnO particles effectively kill PC-3 prostate adenocarcinoma cells at concentrations that are not cytotoxic to normal cells, WI-38 human embryonic lung fibroblasts. The EGCG-ZnO particles are two times more cytotoxic against PC-3 cells than the standard ZnO particles. In PC-3 cells, the EGCG-ZnO particles are taken up by endocytosis, followed by lysosomal disruption to release zinc and EGCG into the cytoplasm, finally resulting in nuclear accumulation of zinc. A tea polyphenol, epigallocatechin-3-gallate (EGCG), can enhance cytotoxicity of Zinc in cancer cells. Here we synthesize hybrid EGCG-ZnO nanoparticles that can kill PC-3 prostate cancer cells at concentrations that are not toxic to normal cells.![]()
Collapse
Affiliation(s)
- Pawatsanai Samutprasert
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Thailand
- Center of Excellence on Petrochemical and Materials Technology
| | - Khajeelak Chiablaem
- Laboratory of Biochemistry
- Chulabhorn Research Institute
- Bangkok 10210
- Thailand
| | - Chanon Teeraseranee
- Department of Nanoengineering
- Faculty of Engineering
- Chulalongkorn University
- Thailand
| | | | | | | | - Jisnuson Svasti
- Laboratory of Biochemistry
- Chulabhorn Research Institute
- Bangkok 10210
- Thailand
| | - Tanapat Palaga
- Department of Microbiology
- Faculty of Science
- Chulalongkorn University
- Thailand
- Center of Excellence on Materials and Bio-interfaces
| | | | - Supason Wanichwecharungruang
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Thailand
- Center of Excellence on Materials and Bio-interfaces
| |
Collapse
|
23
|
Saghatforoush L, Moeini K, Hosseini-Yazdi SA, Mardani Z, Hajabbas-Farshchi A, Jameson HT, Telfer SG, Woollins JD. Theoretical and experimental investigation of anticancer activities of an acyclic and symmetrical compartmental Schiff base ligand and its Co(ii), Cu(ii) and Zn(ii) complexes. RSC Adv 2018; 8:35625-35639. [PMID: 35547928 PMCID: PMC9088086 DOI: 10.1039/c8ra07463a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 11/21/2022] Open
Abstract
A compartmental Schiff base ligand, 2,2′-((((((2-hydroxypropane-1,3-diyl)bis(oxy))bis(2,1-phenylene))bis(methylene))bis(azanylylidene))bis(methanylylidene))bis(4-bromophenol) (H3LBr) and its complexes with cobalt(ii), copper(ii) and zinc(ii) including, [Co(HLBr)] (1), [Cu2(LBr)(μ-1,3-OAc)]·MeOH (2) and [Zn(HLBr)] (3) were prepared using template synthesis and characterised by elemental analysis, FT-IR and 1H NMR spectroscopies and single-crystal X-ray diffraction. In the structure of complexes 1 and 3 the metal atom has a MN2O2 environment with tetrahedral geometry while complex 2 has a binuclear structure with a MNO4 environment and square planar geometry around the copper atom. The ability of all compounds to interact with the nine biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) are investigated by docking calculations. For examination of the docking results, the in vitro activities of eight compounds against the human leukemia cell line K562 was investigated by evaluation of IC50 values and mode of cell death (apoptosis). A compartmental Schiff base ligand and its copper, cobalt and zinc complexes were prepared. The in vitro activities of all compounds against the human leukemia cell line K562 were investigated along with docking and DFT studies.![]()
Collapse
Affiliation(s)
| | - Keyvan Moeini
- Department of Chemistry
- Payame Noor University
- 19395-4697 Tehran
- I. R. Iran
| | | | - Zahra Mardani
- Inorganic Chemistry Department
- Faculty of Chemistry
- Urmia University
- Urmia
- I. R. Iran
| | | | - Heather T. Jameson
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Massey University
- Palmerston North
- New Zealand
| | - Shane G. Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Massey University
- Palmerston North
- New Zealand
| | | |
Collapse
|
24
|
Umamaheswari R, Akilarasan M, Chen SM, Cheng YH, Mani V, Kogularasu S, Al-Hemaid FM, Ajmal Ali M, Liu X. One-pot synthesis of three-dimensional Mn3O4 microcubes for high-level sensitive detection of head and neck cancer drug nimorazole. J Colloid Interface Sci 2017; 505:1193-1201. [DOI: 10.1016/j.jcis.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
|