1
|
Baumgarten J, Schneider P, Thiemann M, Zimmermann M, Diederich C, Blankenfeldt W, Kunick C. Substrate-Based Ligand Design for Phenazine Biosynthesis Enzyme PhzF. ChemMedChem 2024; 19:e202400466. [PMID: 39163032 DOI: 10.1002/cmdc.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The phenazine pyocyanin is an important virulence factor of the pathogen Pseudomonas aeruginosa, which is on the WHO list of antibiotic resistant "priority pathogens". In this study the isomerase PhzF, a key bacterial enzyme of the pyocyanin biosynthetic pathway, was investigated as a pathoblocker target. The aim of the pathoblocker strategy is to reduce the virulence of the pathogen without killing it, thus preventing the rapid development of resistance. Based on crystal structures of PhzF, derivatives of the inhibitor 3-hydroxyanthranilic acid were designed. Co-crystal structures of the synthesized derivatives with PhzF revealed spacial limitations of the binding pocket of PhzF in the closed conformation. In contrast, ligands aligned to the open conformation of PhzF provided more room for structural modifications. The intrinsic fluorescence of small 3-hydroxyanthranilic acid derivatives enabled direct affinity determinations using FRET assays. The analysis of structure-activity relationships showed that the carboxylic acid moiety is essential for binding to the target enzyme. The results of this study provide fundamental structural insights that will be useful for the design of PhzF-inhibitors.
Collapse
Affiliation(s)
- Janosch Baumgarten
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Philipp Schneider
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Marie Thiemann
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Moritz Zimmermann
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Christina Diederich
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Rebenring 56, Braunschweig, 38106, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
| |
Collapse
|
2
|
Kumar A, Novak J, Singh AK, Singh H, Thareja S, Pathak P, Grishina M, Verma A, Kumar P. Virtual screening, structure based pharmacophore mapping, and molecular simulation studies of pyrido[2,3-d]pyrimidines as selective thymidylate synthase inhibitors. J Biomol Struct Dyn 2023; 41:14197-14211. [PMID: 37154748 DOI: 10.1080/07391102.2023.2208205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 05/10/2023]
Abstract
Human thymidylate synthase is the rate-limiting enzyme in the de novo synthesis of 2'-deoxythymidine-5'-monophosphate. dUMP (pyrimidine) and folate binding site hTS inhibitors showed resistance in colorectal cancer (CRC). In the present study, we have performed virtual screening of the pyrido[2,3-d]pyrimidine database, followed by binding free energy calculations, and pharmacophore mapping to design novel pyrido[2,3-d]pyrimidine derivatives to stabilize inactive confirmation of hTS. A library of 42 molecules was designed. Based on the molecular docking studies, four ligands (T36, T39, T40, and T13) were identified to have better interactions and docking scores with the catalytic sites [dUMP (pyrimidine) and folate binding sites] of hTS protein than standard drug, raltitrexed. To validate efficacy of the designed molecules, we performed molecular dynamics simulation studies at 1000 ns with principal component analysis and binding free energy calculations on the hTS protein, also drug likeness properties of all hits were in acceptable range. Compounds T36, T39, T40, and T13 interacted with the catalytic amino acid (Cys195), an essential amino acid for anticancer activity. The designed molecules stabilized the inactive conformation of hTS, resulting in the inhibition of hTS. The designed compounds will undergo synthesis and biological evaluation, which may yield selective, less toxic, and highly potent hTS inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cyber security, University of Rijeka, Rijeka, Croatia
- Scientific and Educational Center 'Biomedical Technologies' School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
3
|
Gao S, Song L, Xu H, Fikatas A, Oeyen M, De Jonghe S, Zhao F, Jing L, Jochmans D, Vangeel L, Cheng Y, Kang D, Neyts J, Herdewijn P, Schols D, Zhan P, Liu X. Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010160. [PMID: 36615354 PMCID: PMC9822497 DOI: 10.3390/molecules28010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen 518057, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongtao Xu
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Merel Oeyen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| |
Collapse
|
4
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
Wang WY, Yang ZH, Li AL, Liu QS, Sun Y, Gu W. Design, synthesis, anticancer activity and mechanism studies of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj05294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid were designed, synthesized, and evaluated for their anticancer activities against four cancer cell lines (MCF-7, HeLa, HepG2, and A549) and a human hepatocyte cell line (LO2) via MTT assay.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zi-Hui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
6
|
Seboletswe P, Awolade P, Singh P. Recent Developments on the Synthesis and Biological Activities of Fused Pyrimidinone Derivatives. ChemMedChem 2021; 16:2050-2067. [PMID: 33724717 DOI: 10.1002/cmdc.202100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Heterocyclic compounds constitute a unique class of organic compounds endowed with a wide range of synthetic and pharmaceutical applications. Pyrimidinones and their fused analogues have received focused attention in this regard, partly due to their mimicry of nucleobases which consequently forges their interesting medicinal properties. Over the years, the medicinal chemistry research community has experienced an upsurge in articles describing the exploration of these scaffolds to develop effective therapeutic agents. Several biological activities, including antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anticonvulsive, and antihistaminic, have been well documented. This minireview presents a compendium of recent developments (2017-2020) focused on the synthesis and biological activities of fused pyrimidinones. The goal is to update medicinal chemists on the therapeutic relevance of fused pyrimidinones and the molecular architecture of clinic-worthy drug candidates. A brief account of the structure-activity relationships (SAR) revealed from different biological assays is also discussed.
Collapse
Affiliation(s)
- Pule Seboletswe
- School of Chemistry and Physics, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of Kwa-Zulu Natal, Private Bag X01, Scottsville, Durban, South Africa
| |
Collapse
|
7
|
Yadav P, Shah K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3-d]pyrimidines scaffold. Chem Biol Drug Des 2020; 97:633-648. [PMID: 32946161 DOI: 10.1111/cbdd.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Pyrido[2,3-d]pyrimidine, a fused hetero-bicyclic nucleus containing pyridine and pyrimidine rings has attained the momentary attention in the sphere of multicomponent synthetic protocol and medicinal chemist. Pyrido[2,3-d]pyrimidine derived drugs have manifested diverse pharmacological activities, particularly, anti-inflammatory, cytotoxic, antimicrobial, phosphodiesterase inhibitors and cytokine inhibitors etc. The present review illustrates various modern synthetic strategies adopted, the structure-activity relationship (SAR) aspects and discloses the extensive crucial biological properties (anticancer, anti-infectious, anti-diabetics and CNS agents) of pyrido[2,3-d]pyrimidines.
Collapse
Affiliation(s)
- Pratibha Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| |
Collapse
|
8
|
Melo R, Lemos A, Preto AJ, Bueschbell B, Matos-Filipe P, Barreto C, Almeida JG, Silva RDM, Correia JDG, Moreira IS. An Overview of Antiretroviral Agents for Treating HIV Infection in Paediatric Population. Curr Med Chem 2020; 27:760-794. [PMID: 30182840 DOI: 10.2174/0929867325666180904123549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Paediatric Acquired ImmunoDeficiency Syndrome (AIDS) is a life-threatening and infectious disease in which the Human Immunodeficiency Virus (HIV) is mainly transmitted through Mother-To- Child Transmission (MTCT) during pregnancy, labour and delivery, or breastfeeding. This review provides an overview of the distinct therapeutic alternatives to abolish the systemic viral replication in paediatric HIV-1 infection. Numerous classes of antiretroviral agents have emerged as therapeutic tools for downregulation of different steps in the HIV replication process. These classes encompass Non- Nucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs), Nucleoside/Nucleotide Analogue Reverse Transcriptase Inhibitors (NRTIs/NtRTIs), INtegrase Inhibitors (INIs), Protease Inhibitors (PIs), and Entry Inhibitors (EIs). Co-administration of certain antiretroviral drugs with Pharmacokinetic Enhancers (PEs) may boost the effectiveness of the primary therapeutic agent. The combination of multiple antiretroviral drug regimens (Highly Active AntiRetroviral Therapy - HAART) is currently the standard therapeutic approach for HIV infection. So far, the use of HAART offers the best opportunity for prolonged and maximal viral suppression, and preservation of the immune system upon HIV infection. Still, the frequent administration of high doses of multiple drugs, their inefficient ability to reach the viral reservoirs in adequate doses, the development of drug resistance, and the lack of patient compliance compromise the complete HIV elimination. The development of nanotechnology-based drug delivery systems may enable targeted delivery of antiretroviral agents to inaccessible viral reservoir sites at therapeutic concentrations. In addition, the application of Computer-Aided Drug Design (CADD) approaches has provided valuable tools for the development of anti-HIV drug candidates with favourable pharmacodynamics and pharmacokinetic properties.
Collapse
Affiliation(s)
- Rita Melo
- Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal.,CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Agostinho Lemos
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal.,GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège 4000, Belgium
| | - António J Preto
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Beatriz Bueschbell
- Pharmaceutical Chemistry I, PharmaCenter, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Pedro Matos-Filipe
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Carlos Barreto
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - José G Almeida
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Rúben D M Silva
- Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - João D G Correia
- Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - Irina S Moreira
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal.,Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht 3584CH, Netherland
| |
Collapse
|
9
|
Tramontano E, Corona A, Menéndez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 2019; 171:104613. [PMID: 31550450 DOI: 10.1016/j.antiviral.2019.104613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
10
|
Zhang Y, Wang Y, Zhao Y, Gu W, Zhu Y, Wang S. Novel camphor-based pyrimidine derivatives induced cancer cell death through a ROS-mediated mitochondrial apoptosis pathway. RSC Adv 2019; 9:29711-29720. [PMID: 35531556 PMCID: PMC9071996 DOI: 10.1039/c9ra05900h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
A series of novel camphor-based pyrimidine derivatives (3a–3x) have been synthesized; their structures were determined by using conventional methods and compound 3f was further confirmed through single crystal XRD analysis. The cytotoxic activity of the target compounds against a panel of human normal (GES-1) and cancer cell lines (MDA-MB-231, RPMI-8226, A549) was evaluated by MTS assay. Here we found that compound 3f exhibited the strongest anti-tumor activity, comparable to that of etoposide, and had much lower cytotoxicity to normal GES-1 cells (IC50 > 50 μM) than the reference drug (IC50 = 8.89 μM). Subsequent mechanism studies in MDA-MB-231 cells revealed that compound 3f caused G0/G1 phase arrest and apoptosis in a dose dependent manner. Moreover, the loss of mitochondrial membrane potential and enhancement of cellular ROS levels were also observed upon 3f treatment, which indicated that 3f exerted cytotoxic activity by a ROS-mediated mitochondrial apoptosis pathway. This result was confirmed by a significant increase in the expression of pro-apoptotic proteins Bax, cytochrome C and caspase-3, and downregulation of anti-apoptosis protein Bcl-2. Overall, 3f can be adopted for further investigation in the development of antitumor agents based on natural products. A series of novel camphor-based pyrimidine derivatives were synthesized and characterized. We found the compound 3f exhibited strongest anti-tumor activity via ROS-mediated mitochondrial apoptosis pathway.![]()
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812
| | - Yunyun Wang
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812
| | - Yuxun Zhao
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812
| | - Wen Gu
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Yongqiang Zhu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd Nanjing 210046 P. R. China
| | - Shifa Wang
- College of Chemical Engineering, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85427812 +86 25 85427812.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
| |
Collapse
|
11
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
12
|
Gao F, Wang T, Gao M, Zhang X, Liu Z, Zhao S, Lv Z, Xiao J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur J Med Chem 2019; 165:323-331. [DOI: 10.1016/j.ejmech.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
|
13
|
Gao P, Wang X, Sun L, Cheng X, Poongavanam V, Kongsted J, Álvarez M, Luczkowiak J, Pannecouque C, De Clercq E, Lee KH, Chen CH, Liu H, Menéndez-Arias L, Liu X, Zhan P. Design, synthesis, and biologic evaluation of novel galloyl derivatives as HIV-1 RNase H inhibitors. Chem Biol Drug Des 2019; 93:582-589. [PMID: 30560566 DOI: 10.1111/cbdd.13455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains as the only enzyme encoded within the viral genome not targeted by current antiviral drugs. In this work, we report the design, synthesis, and biologic evaluation of a novel series of galloyl derivatives with HIV-1 RNase H inhibitory activity. Most of them showed IC50 s at sub- to low-micromolar concentrations in enzymatic assays. The most potent compound was II-25 that showed an IC50 of 0.72 ± 0.07 μM in RNase H inhibition assays carried out with the HIV-1BH 10 RT. II-25 was 2.8 times more potent than β-thujaplicinol in these assays. Interestingly, II-25 and other galloyl derivatives were also found to inhibit the HIV IN strand transfer activity in vitro. Structure-activity relationships (SAR) studies and molecular modeling analysis predict key interactions with RT residues His539 and Arg557, while providing helpful insight for further optimization of selected compounds.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Xueshun Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | | | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | | | - Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| |
Collapse
|
14
|
Elías-Rodríguez P, Pingitore V, Carmona AT, Moreno-Vargas AJ, Ide D, Miyawaki S, Kato A, Álvarez E, Robina I. Discovery of a Potent α-Galactosidase Inhibitor by in Situ Analysis of a Library of Pyrrolizidine–(Thio)urea Hybrid Molecules Generated via Click Chemistry. J Org Chem 2018; 83:8863-8873. [DOI: 10.1021/acs.joc.8b01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pilar Elías-Rodríguez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Valeria Pingitore
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Ana T. Carmona
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Antonio J. Moreno-Vargas
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Daisuke Ide
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shota Miyawaki
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain
| | - Inmaculada Robina
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| |
Collapse
|
15
|
Sun L, Gao P, Dong G, Zhang X, Cheng X, Ding X, Wang X, Daelemans D, De Clercq E, Pannecouque C, Menéndez-Arias L, Zhan P, Liu X. 5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase. Eur J Med Chem 2018; 155:714-724. [DOI: 10.1016/j.ejmech.2018.06.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/26/2022]
|