1
|
Wei M, Chen J, Song Y, Monserrat JP, Zhang Y, Shen L. Progress on synthesis and structure-activity relationships of lamellarins over the past decade. Eur J Med Chem 2024; 269:116294. [PMID: 38508119 DOI: 10.1016/j.ejmech.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Lamellarins are polyaromatic alkaloids isolated from marine organisms, including mollusks, tunicates, and sponges. Currently, over 60 structurally distinct natural lamellarins have been reported, and most of them exhibit promising biological activities, such as topoisomerase inhibition, mitochondrial function inhibition, multidrug resistance reversing, and anti-HIV activity. There has also been a significant progress on the synthetic study of lamellarins which has been regularly updated by numerous medicinal chemists as well. This review provides a detailed summary of the synthesis, pharmacology, and structural modification of lamellarins over the past decades.
Collapse
Affiliation(s)
- Mingze Wei
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | - Jing Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | - Yuliang Song
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | | | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Li Shen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China.
| |
Collapse
|
2
|
García Maza LJ, Salgado AM, Kouznetsov VV, Meléndez CM. Pyrrolo[2,1- a]isoquinoline scaffolds for developing anti-cancer agents. RSC Adv 2024; 14:1710-1728. [PMID: 38187449 PMCID: PMC10768717 DOI: 10.1039/d3ra07047f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Fused pyrrolo[2,1-a]isoquinolines have emerged as compelling molecules with remarkably potent cytotoxic activity and topoisomerase inhibitors. This comprehensive review delves into the intricate world of this family of compounds, analyzing the natural marine lamellarins known for their diverse and complex chemical structures, exploring structure-activity relationships (SARs), and highlighting their remarkable versatility. The review emphasizes their fundamental role as topoisomerase inhibitors and cytotoxic agents, as well as some crucial aspects of the chemistry of pyrrolo[2,1-a]isoquinolines, exploring synthetic strategies in total synthesis and molecular diversification trends, highlighting their importance in the field of medicinal chemistry and beyond.
Collapse
Affiliation(s)
- Leidy J García Maza
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| | - Arturo Mendoza Salgado
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Piedecuesta 680002 Colombia
| | - Carlos M Meléndez
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| |
Collapse
|
3
|
Dzedulionytė K, Fuxreiter N, Schreiber-Brynzak E, Žukauskaitė A, Šačkus A, Pichler V, Arbačiauskienė E. Pyrazole-based lamellarin O analogues: synthesis, biological evaluation and structure-activity relationships. RSC Adv 2023; 13:7897-7912. [PMID: 36909769 PMCID: PMC9999251 DOI: 10.1039/d3ra00972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
A library of pyrazole-based lamellarin O analogues was synthesized from easily accessible 3(5)-aryl-1H-pyrazole-5(3)-carboxylates which were subsequently modified by bromination, N-alkylation and Pd-catalysed Suzuki cross-coupling reactions. Synthesized ethyl and methyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were evaluated for their physicochemical property profiles and in vitro cytotoxicity against three human colorectal cancer cell lines HCT116, HT29, and SW480. The most active compounds inhibited cell proliferation in a low micromolar range. Selected ethyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were further investigated for their mode of action. Results of combined viability staining via Calcein AM/Hoechst/PI and fluorescence-activated cell sorting data indicated that cell death was triggered in a non-necrotic manner mediated by mainly G2/M-phase arrest.
Collapse
Affiliation(s)
- Karolina Dzedulionytė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| | - Nina Fuxreiter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Ekaterina Schreiber-Brynzak
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University Šlechtitelů 27 CZ-78371 Olomouc Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
- Institute of Synthetic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology K. Baršausko g. 59 LT-51423 Kaunas Lithuania
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| |
Collapse
|
4
|
He J, Luo L, Xu S, Yang F, Zhu W. Pyrrole-based EGFR inhibitors for the treatment of NCSLC: Binding modes and SARs investigations. Chem Biol Drug Des 2023; 101:195-217. [PMID: 36394145 DOI: 10.1111/cbdd.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022]
Abstract
The treatment of advanced non-small cell lung cancer (NSCLC) has made substantial progress due to the rapid development of small molecule targeted therapy, with dramatically prolonged survival. As an effective drug for the treatment of NSCLC, epidermal growth factor receptor (EGFR) inhibitors are currently experiencing issues like severe adverse events and drug resistance. It is urgent to develop novel types of EGFR inhibitors to overcome the abovementioned limitations. Pyrrole always works well as a probe for the creation of novel medication candidates for hard-to-treat conditions like lung cancer. Although the design, synthesis, and biological assays of pyrrole derivatives have been reported, their inhibitory actions against the receptor tyrosine kinase (RTK) EGFR have not been in-depthly studied. This review highlights the small molecule EGFR inhibitors containing pyrrole heterocyclic pharmacophores in recent years, and the research on their mechanism, biological activity, and structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Leixuan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Feiyi Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Khattab ESAEH, Ragab A, Abol-Ftouh MA, Elhenawy AA. Therapeutic strategies for Covid-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins. J Biomol Struct Dyn 2022; 40:13291-13309. [PMID: 34647855 PMCID: PMC8544674 DOI: 10.1080/07391102.2021.1989036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 is a pandemic virus that caused infections and deaths in many world countries, including the Middle East. The virus-infected human cells by binding via ACE-2 receptor through the Spike protein of the virus with Furin's help causing cell membrane fusion leading to Covid-19-cell entry. No registered drugs or vaccines are triggering this pandemic viral disease yet. Our present work is based on molecular docking and dynamics simulation that performed to spike protein-ACE-2 interface complex, ACE-2 receptor, Spike protein (RBD), and Furin as targets for new small molecules. These drugs target new potential therapies to show their probabilities toward the active sites of mentioned proteins, strongly causing inhibition and/or potential therapy for covid-19. All target proteins were estimated against new target compounds under clinical trials and repurposing drugs currently present. Possibilities of those molecules and potential therapeutics acting on a certain target were predicted. MD simulations over 200 ns with molecular mechanics-generalized Born surface area (MMGBSA) binding energy calculations were performed. The structural and energetic analyses demonstrated the stability of the ligands-MPros complex. Our present work will introduce new visions of some biologically active molecules for further studies in-vitro and in-vivo for Covid-19, repurposing of these molecules should be taking place under clinical works and offering different strategies for drugs repurposing against Covid-19 diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt,CONTACT Ahmed Ragab ; Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo11884, Egypt
| | - Mahmoud A. Abol-Ftouh
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt,Mahmoud A. Abol-Ftouh Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo11884, Egypt
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Silyanova EA, Samet AV, Semenov VV. A Two-Step Approach to a Hexacyclic Lamellarin Core via 1,3-Dipolar Cycloaddition of Isoquinolinium Ylides to Nitrostilbenes. J Org Chem 2022; 87:6444-6453. [PMID: 35467869 DOI: 10.1021/acs.joc.2c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 1,3-dipolar cycloaddition reaction of isoquinolinium ylides to nitrostilbenes provides an approach to 1,2-diarylpyrrolo[2,1-a]isoquinolinium-3-carboxylates and then to a complete hexacyclic lamellarin core.
Collapse
Affiliation(s)
- E A Silyanova
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - A V Samet
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - V V Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
One-Pot Synthesis and Molecular Modeling Studies of New Bioactive Spiro-Oxindoles Based on Uracil Derivatives as SARS-CoV-2 Inhibitors Targeting RNA Polymerase and Spike Glycoprotein. Pharmaceuticals (Basel) 2022; 15:ph15030376. [PMID: 35337173 PMCID: PMC8954694 DOI: 10.3390/ph15030376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The first outbreak in Wuhan, China, in December 2019 was reported about severe acute coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a–e and isatin derivatives 1a–c to synthesize spiro-oxindoles 3a–d, 4a–e, and 5a–e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-3,5′-pyrido[2,3-d:6,5-d’]dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The computational study involving the docking studies of the binding mode inside two proteins ((RdRp) (PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular parameters were performed for the most active hybrids.
Collapse
|
8
|
Klumthong K, Chalermsub P, Sopha P, Ruchirawat S, Ploypradith P. An Expeditious Modular Hybrid Strategy for the Diversity-Oriented Synthesis of Lamellarins/Azalamellarins with Anticancer Cytotoxicity. J Org Chem 2021; 86:14883-14902. [PMID: 34436897 DOI: 10.1021/acs.joc.1c01639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular hybrid strategy has been developed for the diversity-oriented synthesis of lamellarins/azalamellarins. The common pentacyclic pyrrolodihydroisoquinoline lactone/lactam core was formed via the Michael addition/ring closure (Mi-RC) and the copper(I) thiophene-2-carboxylate (CuTC)-catalyzed C-O/C-N Ullmann coupling. Subsequent direct functionalization at C1, DDQ-mediated C5═C6 oxidation, and global deprotection of all benzyl-type O- and N-protecting groups furnished the desired lamellarins/azalamellarins. The late-stage functionalization at C1 provided a handle to accommodate a wider scope of functional groups as they need to tolerate only the DDQ oxidation and global deprotection. Moreover, with the C1-H pyrrole as the late-stage common intermediate, it was also possible to divergently exploit not only its nucleophilic nature to react with some electrophilic species but also some transition-metal-catalyzed cross-coupling reactions (via the intermediacy of the C1-iodopyrrole) to incorporate diversity at this position. Overall, this strategy simplifies the preparation of lamellarins/azalamellarins; including the Mi-RC, these C1-structurally diverse analogues could be prepared efficiently in 6-7 steps from the easily accessed 1-acetoxymethyldihydroisoquinoline and β-nitrocinnamate. Some selected azalamellarins were evaluated for their inhibitory effect against HeLa cervical cancer cells. An acute induction of intrinsic apoptosis was detected and may lead to growth suppression of or cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Kanawut Klumthong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Papornchanok Chalermsub
- Applied Biological Sciences, Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Pattarawut Sopha
- Applied Biological Sciences, Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
10
|
Munekata PES, Pateiro M, Conte-Junior CA, Domínguez R, Nawaz A, Walayat N, Movilla Fierro E, Lorenzo JM. Marine Alkaloids: Compounds with In Vivo Activity and Chemical Synthesis. Mar Drugs 2021; 19:374. [PMID: 34203532 PMCID: PMC8306672 DOI: 10.3390/md19070374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer's disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Carlos A. Conte-Junior
- Centro de Tecnologia, Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou 310014, China;
| | | | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
11
|
Nishiya N, Oku Y, Ishikawa C, Fukuda T, Dan S, Mashima T, Ushijima M, Furukawa Y, Sasaki Y, Otsu K, Sakyo T, Abe M, Yonezawa H, Ishibashi F, Matsuura M, Tomida A, Seimiya H, Yamori T, Iwao M, Uehara Y. Lamellarin 14, a derivative of marine alkaloids, inhibits the T790M/C797S mutant epidermal growth factor receptor. Cancer Sci 2021; 112:1963-1974. [PMID: 33544933 PMCID: PMC8088975 DOI: 10.1111/cas.14839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
The emergence of acquired resistance is a major concern associated with molecularly targeted kinase inhibitors. The C797S mutation in the epidermal growth factor receptor (EGFR) confers resistance to osimertinib, a third‐generation EGFR‐tyrosine kinase inhibitor (EGFR‐TKI). We report that the derivatization of the marine alkaloid topoisomerase inhibitor lamellarin N provides a structurally new class of EGFR‐TKIs. One of these, lamellarin 14, is effective against the C797S mutant EGFR. Bioinformatic analyses revealed that the derivatization transformed the topoisomerase inhibitor‐like biological activity of lamellarin N into kinase inhibitor‐like activity. Ba/F3 and PC‐9 cells expressing the EGFR in‐frame deletion within exon 19 (del ex19)/T790M/C797S triple‐mutant were sensitive to lamellarin 14 in a dose range similar to the effective dose for cells expressing EGFR del ex19 or del ex19/T790M. Lamellarin 14 decreased the autophosphorylation of EGFR and the downstream signaling in the triple‐mutant EGFR PC‐9 cells. Furthermore, intraperitoneal administration of 10 mg/kg lamellarin 14 for 17 days suppressed tumor growth of the triple‐mutant EGFR PC‐9 cells in a mouse xenograft model using BALB/c nu/nu mice. Thus, lamellarin 14 serves as a novel structural backbone for an EGFR‐TKI that prevents the development of cross‐resistance against known drugs in this class.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Yusuke Oku
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Chie Ishikawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Tsutomu Fukuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaru Ushijima
- Clinical Research and Medical Development Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Furukawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Yuka Sasaki
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Tomoko Sakyo
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Masanori Abe
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Honami Yonezawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Fumito Ishibashi
- Division of Marine Life Science and Biochemistry, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Masaaki Matsuura
- Teikyo University Graduate School of Public Health, Tokyo, Japan
| | - Akihiro Tomida
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masatomo Iwao
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| | - Yoshimasa Uehara
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| |
Collapse
|
12
|
Fukuda T, Anzai M, Nakahara A, Yamashita K, Matsukura K, Ishibashi F, Oku Y, Nishiya N, Uehara Y, Iwao M. Synthesis and evaluation of azalamellarin N and its A-ring-modified analogues as non-covalent inhibitors of the EGFR T790M/L858R mutant. Bioorg Med Chem 2021; 34:116039. [PMID: 33556869 DOI: 10.1016/j.bmc.2021.116039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
Azalamellarin N, a synthetic lactam congener of the marine natural product lamellarin N, and its A-ring-modified analogues were synthesized and evaluated as potent and non-covalent inhibitors of the drug-resistant epidermal growth factor receptor T790M/L858R mutant. An in vitro tyrosine kinase assay indicated that the inhibitory activities of the synthetic azalamellarin analogues were higher than those of the corresponding lamellarins. The azalamellarin analogue bearing two 3-(dimethylamino)propoxy groups at C20- and C21-positions exhibited the highest activity and selectivity against the mutant kinase [IC50 (T790M/L858R) = 1.7 nM; IC50 (WT) = 4.6 nM]. The inhibitory activity was attributed to the hydrogen bonding interaction between the lactam NH group of the B-ring and carbonyl group of a methionine residue.
Collapse
Affiliation(s)
- Tsutomu Fukuda
- Environmental Protection Center, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Mizuho Anzai
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Akane Nakahara
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kentaro Yamashita
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuaki Matsukura
- Division of Marine Life Science and Biochemistry, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Fumito Ishibashi
- Division of Marine Life Science and Biochemistry, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yusuke Oku
- Department of Integrated Information for Pharmaceutical Sciences, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Naoyuki Nishiya
- Department of Integrated Information for Pharmaceutical Sciences, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Yoshimasa Uehara
- Department of Integrated Information for Pharmaceutical Sciences, Iwate Medical University School of Pharmacy, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Masatomo Iwao
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
13
|
Fukuda T, Okutani S, Sumi M, Miyagi K, Onodera G, Kimura M. Divergent Total Synthesis of Azalamellarins D and N. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Protein kinases as targets for developing anticancer agents from marine organisms. Biochim Biophys Acta Gen Subj 2020; 1865:129759. [PMID: 33038451 DOI: 10.1016/j.bbagen.2020.129759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 01/11/2023]
Abstract
Protein kinases play a fundamental role in the intracellular transduction because of their ability to phosphorylate plethora of proteins. Over the past three decades, numerous protein kinase inhibitors have been identified and are being used clinically successfully. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer agents in the treatment of human malignancies and a lot of bioactive ingredients from marine organisms display anticancer effects by affecting the protein kinases-mediated pathways. In the present mini-review, anticancer compounds from marine source were reviewed and discussed in context of their targeted pathways associated with protein kinases and the progress of these compounds as anticancer agents in recent five years were emphasized. The molecular entities and their modes of actions were presented. We focused on protein kinases-mediated signaling pathways including PI3K/Akt/mTOR, p38 MAPK, and EGFR. The marine compounds targeting special pathways of protein kinases were highlighted. We have also discussed the existing challenges and prospects related to design and development of novel protein kinase inhibitors from marine sources.
Collapse
|
15
|
Kanwal S, Ann NU, Fatima S, Emwas AH, Alazmi M, Gao X, Ibrar M, Zaib Saleem RS, Chotana GA. Facile Synthesis of NH-Free 5-(Hetero)Aryl-Pyrrole-2-Carboxylates by Catalytic C-H Borylation and Suzuki Coupling. Molecules 2020; 25:molecules25092106. [PMID: 32365945 PMCID: PMC7248765 DOI: 10.3390/molecules25092106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/25/2022] Open
Abstract
A convenient two-step preparation of NH-free 5-aryl-pyrrole-2-carboxylates is described. The synthetic route consists of catalytic borylation of commercially available pyrrole-2-carboxylate ester followed by Suzuki coupling without going through pyrrole N–H protection and deprotection steps. The resulting 5-aryl substituted pyrrole-2-carboxylates were synthesized in good- to excellent yields. This synthetic route can tolerate a variety of functional groups including those with acidic protons on the aryl bromide coupling partner. This methodology is also applicable for cross-coupling with heteroaryl bromides to yield pyrrole-thiophene, pyrrole-pyridine, and 2,3’-bi-pyrrole based bi-heteroaryls.
Collapse
Affiliation(s)
- Saba Kanwal
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Noor-ul- Ann
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Saman Fatima
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Meshari Alazmi
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (X.G.)
- College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81481, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (X.G.)
| | - Maha Ibrar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
- Correspondence: ; Tel.: +92-42-3560-8281
| |
Collapse
|
16
|
Silyanova EA, Samet AV, Salamandra LK, Khrustalev VN, Semenov VV. Formation of 3,4-Diarylpyrrole- and Pyrrolocoumarin Core of Natural Marine Products via Barton-Zard Reaction and Selective O-Demethylation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eugenia A. Silyanova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander V. Samet
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Lev K. Salamandra
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Victor N. Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya Street 117198 Moscow Russian Federation
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
17
|
Lamellarin alkaloids: Isolation, synthesis, and biological activity. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 83:1-112. [PMID: 32098648 DOI: 10.1016/bs.alkal.2019.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lamellarins are marine alkaloids containing fused 14-phenyl-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinoline or non-fused 3,4-diarylpyrrole-2-carboxylate ring systems. To date, more than 50 lamellarins have been isolated from a variety of marine organisms, such as mollusks, tunicates, and sponges. Many of them, especially fused type I lamellarins, exhibit impressive biological activity, such as potent cytotoxicity, topoisomerase I inhibition, protein kinases inhibition, and anti-HIV-1 activity. Due to their useful biological activity and limited availability from natural sources, a number of synthetic methods have been developed. In this chapter, we present an updated and comprehensive review on lamellarin alkaloids summarizing their isolation, synthesis, and biological activity.
Collapse
|
18
|
Klintworth R, de Koning CB, Michael JP. Demethylative Lactonization Provides a Shortcut to High-Yielding Syntheses of Lamellarins. J Org Chem 2019; 85:1054-1061. [PMID: 31840515 DOI: 10.1021/acs.joc.9b02983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Modular gram-scale syntheses of the trimethyl ethers of lamellarins G (6) and D (7) were achieved from readily accessible precursors in the highest overall yields reported to date (6, six steps, 82%; 7, seven steps, 86%). A novel demethylative lactonization between an aryl methyl ether and a neighboring carboxylic acid was developed for creating the chromenone unit of the targets to avoid the need for additional protection and deprotection steps. The central pyrrole core was constructed in a late-stage [4 + 1] condensation between ethyl bromoacetate and an enaminone possessing the remaining components of the lamellarin skeleton. Exhaustive demethylation of both permethyl ethers 6 and 7 gave the polyphenolic natural lamellarins A4 (3) and H (5), respectively.
Collapse
Affiliation(s)
- Robin Klintworth
- Molecular Sciences Institute, School of Chemistry , University of the Witwatersrand , Wits 2050 , Johannesburg , South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, School of Chemistry , University of the Witwatersrand , Wits 2050 , Johannesburg , South Africa
| | - Joseph P Michael
- Molecular Sciences Institute, School of Chemistry , University of the Witwatersrand , Wits 2050 , Johannesburg , South Africa
| |
Collapse
|
19
|
Engelhardt H, Böse D, Petronczki M, Scharn D, Bader G, Baum A, Bergner A, Chong E, Döbel S, Egger G, Engelhardt C, Ettmayer P, Fuchs JE, Gerstberger T, Gonnella N, Grimm A, Grondal E, Haddad N, Hopfgartner B, Kousek R, Krawiec M, Kriz M, Lamarre L, Leung J, Mayer M, Patel ND, Simov BP, Reeves JT, Schnitzer R, Schrenk A, Sharps B, Solca F, Stadtmüller H, Tan Z, Wunberg T, Zoephel A, McConnell DB. Start Selective and Rigidify: The Discovery Path toward a Next Generation of EGFR Tyrosine Kinase Inhibitors. J Med Chem 2019; 62:10272-10293. [PMID: 31689114 DOI: 10.1021/acs.jmedchem.9b01169] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.
Collapse
Affiliation(s)
- Harald Engelhardt
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Dietrich Böse
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Mark Petronczki
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Anke Baum
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Bergner
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Eugene Chong
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Sandra Döbel
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Georg Egger
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Christian Engelhardt
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Julian E Fuchs
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nina Gonnella
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Andreas Grimm
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Elisabeth Grondal
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nizar Haddad
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Barbara Hopfgartner
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Mariusz Krawiec
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Monika Kriz
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Lyne Lamarre
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Joyce Leung
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nitinchandra D Patel
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Biljana Peric Simov
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Jonathan T Reeves
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Renate Schnitzer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Schrenk
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Bernadette Sharps
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Heinz Stadtmüller
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Zhulin Tan
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Zoephel
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| |
Collapse
|
20
|
Pyrrolo[2,1- a]isoquinoline scaffold in drug discovery: advances in synthesis and medicinal chemistry. Future Med Chem 2019; 11:2735-2755. [PMID: 31556691 DOI: 10.4155/fmc-2019-0136] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pyrrolo[2,1-a]isoquinoline (PIq) is a nitrogen heterocyclic scaffold of diverse alkaloids endowed with several biological activities, including antiretroviral and antitumor activities. Several 5,6-dihydro-PIq (DHPIq) alkaloids, belonging to the lamellarins' family, have proved to be cytotoxic to tumor cells, as well as reversers of multidrug resistance. In this review, we provide an overview of the main achievements over the last decade in the synthetic approaches to access libraries of PIq compounds along with a survey, as comprehensive as possible, of bioactivity, mechanism of action, pharmacophore and structure-activity relationships of synthetic analogs of DHPIq-based alkaloids. The focus is mainly on the potential exploitation of the (DH)PIq scaffold in design and development of novel antitumor drugs.
Collapse
|
21
|
Singh PK, Chaudhari D, Jain S, Silakari O. Structure based designing of triazolopyrimidone-based reversible inhibitors for kinases involved in NSCLC. Bioorg Med Chem Lett 2019; 29:1565-1571. [PMID: 31078412 DOI: 10.1016/j.bmcl.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Secondary acquired mutant EGFR (L858R-T790M) overexpressed NSCLC forms one of the prevalent form of resistant NSCLC. Another subset of resistant NSCLC includes amplified cMET in mutant EGFR derived tumours. Thus, in continuation to our previous work on these two major targets of resistant NSCLC, i.e., EGFR (L858R-T790M) and cMET, we are hereby reporting reversible inhibitors of these kinases. Out of 11 lead molecules reported in our previous study, we selected triazolo-pyrimidone (BAS 09867482) scaffold for further development of small molecule dual and reversible inhibitors. Analogues of lead with different substituents on the side ring were sketched and docked in both the target kinases, followed by molecular dynamic simulations. Analogues maintaining hydrophobic interaction with M790 in secondary acquired mutant EGFR (L858R-T790M) were selected and duly synthesized. In vitro biochemical evaluation of these molecules against EGFR (L858R-T790M) and cMET kinase, along with EGFR (L858R) kinase disclosed that three molecules were having significant dual kinase inhibitory potential with IC50 values well below 100 nM. Further, in vitro anti-proliferative assay against three cell lines (A549, A431 and H460) was performed. Out of all, two compounds were having significant potency against these cell lines.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, NIPER, SAS Nagar, Mohali, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, NIPER, SAS Nagar, Mohali, Punjab, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
22
|
Synthesis and evaluation of 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine as new EGFR inhibitors. Bioorg Med Chem 2018; 26:2173-2185. [PMID: 29576272 DOI: 10.1016/j.bmc.2018.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
In present study, we described the synthesis and biological evaluation of a new class of EGFR inhibitors containing 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine scaffold. Thirty-one compounds were synthesized. Among them, compound C9 displayed the IC50 of 29.4 nM against HCC827 cell line and 1.9 nM against EGFRL858R. Compound C12 showed moderate inhibitory activity against EGFRL858R/T790M/C797S (IC50 = 114 nM). Western bolt assay suggested that compound C9 significantly inhibited EGFR phosphorylation. In vivo test, compound C9 remarkably exhibited inhibitory effect on tumor growth at 5.0 mg/kg by oral administration in established nude mouse HCC827 xenograft model. These results indicate that the 2,9-disubstituted 8-phenylsulfinyl/phenylsulfinyl-9H-purine derivatives can act as potent EGFR(L858R) inhibitors and effective anticancer agents. Additionally, optimization of compound C12 may result in discovering the fourth-generation EGFR-TKIs.
Collapse
|