1
|
Oliveira NJC, Dos Santos Júnior VS, Pierotte IC, Leocádio VAT, Santana LFDA, Marques GVDL, Protti ÍF, Braga SFP, Kohlhoff M, Freitas TR, Sabino ADP, Kronenberger T, Gonçalves JE, Johann S, Santos DA, César IDC, Maltarollo VG, Oliveira RB. Discovery of Lead 2-Thiazolylhydrazones with Broad-Spectrum and Potent Antifungal Activity. J Med Chem 2023; 66:16628-16645. [PMID: 38064359 DOI: 10.1021/acs.jmedchem.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Opportunistic fungal infections represent a global health problem, mainly for immunocompromised individuals. New therapeutical options are needed since several fungal strains show resistance to clinically available antifungal agents. 2-Thiazolylhydrazones are well-known as potent compounds against Candida and Cryptococcus species. A scaffold-focused drug design using machine-learning models was established to optimize the 2-thiazolylhydrazone skeleton and obtain novel compounds with higher potency, better solubility in water, and enhanced absorption. Twenty-nine novel compounds were obtained and most showed low micromolar MIC values against different species of Candida and Cryptococcus spp., including Candida auris, an emerging multidrug-resistant yeast. Among the synthesized compounds, 2-thiazolylhydrazone 28 (MIC value ranging from 0.8 to 52.17 μM) was selected for further studies: cytotoxicity evaluation, permeability study in Caco-2 cell model, and in vivo efficacy against Cryptococcus neoformans in an invertebrate infection model. All results obtained indicate the great potential of 28 as a novel antifungal agent.
Collapse
Affiliation(s)
- Nereu Junio Cândido Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Valtair Severino Dos Santos Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Isabella Campolina Pierotte
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Victor Augusto Teixeira Leocádio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz Felipe de Andrade Santana
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Vitor de Lima Marques
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ícaro Ferrari Protti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Saulo Fehelberg Pinto Braga
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Markus Kohlhoff
- Química de Produtos Naturais Bioativos (QPNB), Instituto René Rachou (IRR) - FIOCRUZ Minas, Belo Horizonte 30190-009, Brazil
| | - Túlio Resende Freitas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
- Excellence Cluster ″Controlling Microbes to Fight Infections″ (CMFI), 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - José Eduardo Gonçalves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Isabela da Costa César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Renata Barbosa Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
2
|
Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, König P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M. Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation. J Med Chem 2023; 66:14787-14814. [PMID: 37902787 PMCID: PMC10641818 DOI: 10.1021/acs.jmedchem.3c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Anja Vogelmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Florian Friedrich
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Margarita A. Tararina
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emilia Neuwirt
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Arianna Colcerasa
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Philipp König
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Talha Z. Yesiloglu
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Sebastian Hilscher
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Lena Gaitzsch
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Niklas Papenkordt
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Shiyang Zhai
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lin Zhang
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christophe Romier
- Institut
de Génétique et de Biologie Moléculaire et Cellulaire
(IGBMC), Université de Strasbourg,
CNRS UMR 7104, Inserm UMR-S 1258, 1 rue Laurent Fries, F-67400 Illkirch, France
| | - Oliver Einsle
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Olaf Gross
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Center
for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| | - Gerd Bendas
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K. Hansen
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Wu J, Wang Z, Wang C, Wang Y, Li H, Luo H, Li H, Wang F, Li D, Yang J. Research Progress on the Synthesis of Nitrogen-Containing Compounds with Cyanamide as a Building Block. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Cornelius LAM, Li J, Smith D, Krishnananthan S, Yip S, Wu DR, Pawluczyk J, Aulakh D, Sarjeant AA, Kempson J, Tino JA, Mathur A, Murali Dhar TG, Cherney RJ. Synthesis of 1-( tert-Butyl) 4-Methyl (1 R,2 S,4 R)-2-Methylcyclohexane-1,4-dicarboxylate from Hagemann's tert-Butyl Ester for an Improved Synthesis of BMS-986251. J Org Chem 2020; 85:10988-10993. [PMID: 32687358 DOI: 10.1021/acs.joc.0c01169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe an efficient synthetic route to differentially protected diester, 1-(tert-butyl) 4-methyl (1R,2S,4R)-2-methylcyclohexane-1,4-dicarboxylate (+)-1, via palladium-catalyzed methoxycarbonylation of an enol triflate derived from a Hagemann's ester derivative followed by a stereoselective Crabtree hydrogenation. Diester 1 is a novel chiral synthon useful in drug discovery and was instrumental in the generation of useful SAR during a RORγt inverse agonist program. In addition, we describe a second-generation synthesis of the clinical candidate BMS-986251, using diester 1 as a critical component.
Collapse
Affiliation(s)
- Lyndon A M Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jianqing Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Daniel Smith
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Subramaniam Krishnananthan
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Joseph Pawluczyk
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Darpandeep Aulakh
- Materials Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amy A Sarjeant
- Materials Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - James Kempson
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Joseph A Tino
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | | | - T G Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Robert J Cherney
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
5
|
Dai T, Cui C, Qi X, Cheng Y, He Q, Zhang X, Luo X, Yang C. Regioselective synthesis of substituted thiazoles via cascade reactions from 3-chlorochromones and thioamides. Org Biomol Chem 2020; 18:6162-6170. [DOI: 10.1039/d0ob01019g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An efficient and regioselective strategy to synthesize substituted thiazoles via a cascade reaction in an environmentally benign medium was developed.
Collapse
Affiliation(s)
- Tianzi Dai
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Chen Cui
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xueyu Qi
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yanshu Cheng
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Qian He
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xiaomin Luo
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Chunhao Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
6
|
Fu RG, Wang Y, Xia F, Zhang HL, Sun Y, Yang DW, Wang YW, Yin P. Synthesis of 2-Amino-5-acylthiazoles by a Tertiary Amine-Promoted One-Pot Three-Component Cascade Cyclization Using Elemental Sulfur as a Sulfur Source. J Org Chem 2019; 84:12237-12245. [PMID: 31480831 DOI: 10.1021/acs.joc.9b02032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel one-pot three-component cascade cyclization strategy for the synthesis of 2-amino-5-acylthiazoles using enaminones, cyanamide, and elemental sulfur has been developed. The reported methods have demonstrated good tolerance of various functional groups. Up to 28 2-amino-5-acylthiazole compounds bearing diverse structural differences were successfully synthesized from easily obtained starting materials with moderate to excellent yields. Our method provides an effective way for the access of valuable and potentially bioactive 2-amino-5-acylthiazole derivatives.
Collapse
Affiliation(s)
- Rong-Geng Fu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Yong Wang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Fei Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Hao-Lin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Yuan Sun
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Duo-Wen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Ye-Wei Wang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , People's Republic of China
| |
Collapse
|