1
|
Ahmad I, Patel HM. From challenges to solutions: A review of fourth-generation EGFR tyrosine kinase inhibitors to overcome the C797S triple mutation in non-small cell lung cancer. Eur J Med Chem 2024; 284:117178. [PMID: 39724727 DOI: 10.1016/j.ejmech.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
This Review discusses recent advancements in the development of fourth-generation "Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs)" targeting resistance mutations, with an emphasis on the C797S mutation in "Non-small Cell Lung Cancer (NSCLC)". While first, second, and third-generation EGFR-TKIs have made significant progress in overcoming EGFR kinase resistance, the emergence of the EGFR-C797S mutation poses a substantial challenge, particularly in the context of resistance to Osimertinib. Fourth-generation TKIs are classified into ATP-competitive, allosteric, and ortho-allosteric inhibitors, with the goal of enhancing specificity for mutant EGFR while minimizing off-target effects on wild-type EGFR to reduce toxicity. This Review provides a detailed analysis of structural modifications and their impact on drug potency and selectivity, with the aim of improving efficacy against resistant NSCLC. Preclinical and early-phase clinical trials of these inhibitors are promising, though further optimization of pharmacokinetic and safety profiles is crucial for future clinical success. This work offers key insights for medicinal chemists in the design and development of fourth-generation EGFR inhibitors to address drug-resistant mutations in NSCLC.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
2
|
Kageji H, Momose T, Ebisawa M, Nakazawa Y, Okada H, Togashi N, Nagamoto Y, Obuchi W, Yasumatsu I, Kihara K, Hiramoto K, Minami M, Kasanuki N, Isoyama T, Naito H, Tanaka N. Discovery of a potent, selective, and orally available EGFR C797S mutant inhibitor (DS06652923) with in vivo antitumor activity. Bioorg Med Chem 2024; 111:117862. [PMID: 39111073 DOI: 10.1016/j.bmc.2024.117862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
The C797S mutation is one of the major factors behind resistance to the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). Herein, we describe the discovery of DS06652923, a novel, potent, and orally available EGFR-triple-mutant inhibitor. Through scaffold hopping from the previously reported nicotinamide derivative, a novel biaryl scaffold was obtained. The potency was successfully enhanced by the introduction of basic substituents based on analysis of the docking study results. In addition, the difluoromethoxy group on the pyrazole ring improved the kinase selectivity by inducing steric clash with the other kinases. The most optimized compound, DS06652923, achieved tumor regression in the Ba/F3 allograft model upon its oral administration.
Collapse
Affiliation(s)
- Hideaki Kageji
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Takayuki Momose
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masayuki Ebisawa
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yusuke Nakazawa
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Okada
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriko Togashi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuhito Nagamoto
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Wataru Obuchi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Isao Yasumatsu
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kawori Kihara
- Daiichi Sankyo Co., Ltd., 2716-1 Chiyodamachi, Oaza Akaiwa, Aza Kurakake, Oura, Gunma 370-0503, Japan
| | - Kumiko Hiramoto
- Daiichi Sankyo Co., Ltd., 2716-1 Chiyodamachi, Oaza Akaiwa, Aza Kurakake, Oura, Gunma 370-0503, Japan
| | - Megumi Minami
- Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Naomi Kasanuki
- Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takeshi Isoyama
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Naito
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Naoki Tanaka
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
3
|
Das D, Xie L, Hong J. Next-generation EGFR tyrosine kinase inhibitors to overcome C797S mutation in non-small cell lung cancer (2019-2024). RSC Med Chem 2024:d4md00384e. [PMID: 39246743 PMCID: PMC11376191 DOI: 10.1039/d4md00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for the major portion (80-85%) of all lung cancer cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are commonly used as the targeted therapy for EGFR-mutated NSCLC. The FDA has approved first-, second- and third-generation EGFR-TKIs as therapeutics options. Osimertinib, the third-generation irreversible EGFR-TKI, has been approved for the treatment of NSCLC patients with the EGFRT790M mutation. However, due to the EGFRC797S mutation in the kinase domain of EGFR, resistance to osimertinib is observed and that limits the long-term effectiveness of the drug. The C797S mutation is one of the major causes of drug resistance against the third-generation EGFR TKIs. The C797S mutations including EGFR double mutations (19Del/C797S or L858R/C797S) and or EGFR triple mutations (19Del/T790M/C797S or L858R/T790M/C797S) cause major resistance to the third-generation EGFR-TKIs. Therefore, the discovery and development of fourth-generation EGFR-TKIs to target triple mutant EGFR with C797S mutation is a challenging topic in medicinal chemistry research. In this review, we discuss the discovery of novel fourth-generation EGFR TKIs, medicinal chemistry approaches and the strategies to overcome the C797S mutations. In vitro activities of EGFR-TKIs (2019-2024) against mutant EGFR TK, anti-proliferative activities, structural modifications, binding modes of the inhibitors and in vivo efficacies in animal models are discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Lingzhi Xie
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| |
Collapse
|
4
|
Manna T, Maji S, Maity M, Debnath B, Panda S, Khan SA, Nath R, Akhtar MJ. Anticancer potential and structure activity studies of purine and pyrimidine derivatives: an updated review. Mol Divers 2024:10.1007/s11030-024-10870-4. [PMID: 38856835 DOI: 10.1007/s11030-024-10870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Cancer is the world's leading cause of death impacting millions of lives globally. The increasing research over the past several decades has focused on the development of new anticancer drugs, but still cancer continues to be a global health challenge. Thus, several new alternative therapeutic strategies have been tried for the drug design and discovery. Purine and pyrimidine heterocyclic compounds have received attention recently due to their potential in targeting various cancers. It is evident from the recently published data over the last decade that incorporation of the purine and pyrimidine rings in the synthesized derivatives resulted in the development of potent anticancer molecules. This review presents synthetic strategies encompassing several examples of recently developed purine and pyrimidine-containing compounds as anticancer agents. In addition, their structure-activity relationships are represented in the schemes indicating the fragment or groups that are essential for the enhanced anticancer activities. Purine and pyrimidines combined with other heterocyclic compounds have resulted in many novel anticancer molecules that address the challenges of drug resistance. The purine and pyrimidine derivatives showed significantly enhanced anticancer activities against targeted receptor proteins with numerous compounds with an IC50 value in the nanomolar range. The review will support medicinal chemists and contribute in progression and development of synthesis of more potent chemotherapeutic drug candidates to mitigate the burden of this dreadful disease.
Collapse
Affiliation(s)
- Tanushree Manna
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Mousumi Maity
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India.
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata, 700109, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman.
| |
Collapse
|
5
|
Chang H, Zhang Z, Tian J, Bai T, Xiao Z, Wang D, Qiao R, Li C. Machine Learning-Based Virtual Screening and Identification of the Fourth-Generation EGFR Inhibitors. ACS OMEGA 2024; 9:2314-2324. [PMID: 38250375 PMCID: PMC10795152 DOI: 10.1021/acsomega.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal regulatory role in treating patients with advanced nonsmall cell lung cancer (NSCLC). Following the emergence of the EGFR tertiary CIS C797S mutation, all types of inhibitors lose their inhibitory activity, necessitating the urgent development of new inhibitors. Computer systems employ machine learning methods to process substantial volumes of data and construct models that enable more accurate predictions of the outcomes of new inputs. The purpose of this article is to uncover innovative fourth-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with the aid of machine learning techniques. The paper's data set was high-dimensional and sparse, encompassing both structured and unstructured descriptors. To address this considerable challenge, we introduced a fusion framework to select critical molecule descriptors by integrating the full quadratic effect model and the Lasso model. Based on structural descriptors obtained from the full quadratic effect model, we conceived and synthesized a variety of small-molecule inhibitors. These inhibitors demonstrated potent inhibitory effects on the two mutated kinases L858R/T790M/C797S and Del19/T790M/C797S. Moreover, we applied our model to virtual screening, successfully identifying four hit compounds. We have evaluated these hit ADME characteristics and look forward to conducting activity evaluations on them in the future to discover a new generation of EGFR-TKI.
Collapse
Affiliation(s)
- Hao Chang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyu Zhang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Jiaxin Tian
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tian Bai
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Zijie Xiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dianpeng Wang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Renzhong Qiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
6
|
Kageji H, Momose T, Nagamoto Y, Togashi N, Yasumatsu I, Nishikawa Y, Kihara K, Hiramoto K, Minami M, Kasanuki N, Isoyama T, Naito H. Synthesis, activity, and their relationships of 2,4-diaminonicotinamide derivatives as EGFR inhibitors targeting C797S mutation. Bioorg Med Chem Lett 2024; 98:129575. [PMID: 38065292 DOI: 10.1016/j.bmcl.2023.129575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The C797S mutation is one of the major factors behind resistance to the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Herein, we describe the discovery of the 2,4-diaminonicotinamide derivative 5j, which shows potent inhibitory activity against EGFR del19/T790M/C797S and L858R/T790M/C797S. We also report the structure-activity relationship of the 2,4-diaminonicotinamide derivatives and the co-crystal structure of 5j and EGFR del19/T790M/C797S.
Collapse
Affiliation(s)
- Hideaki Kageji
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Takayuki Momose
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuhito Nagamoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriko Togashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Isao Yasumatsu
- Daiichi Sankyo RD Novare Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yosuke Nishikawa
- Daiichi Sankyo RD Novare Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kawori Kihara
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kumiko Hiramoto
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Megumi Minami
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Naomi Kasanuki
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takeshi Isoyama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Naito
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
7
|
Abdullah S, Ganguly S. An overview of imidazole and its analogues as potent anticancer agents. Future Med Chem 2023; 15:1621-1646. [PMID: 37727960 DOI: 10.4155/fmc-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The quest for novel, physiologically active imidazoles remains an exciting topic of research among medicinal chemists. The imidazole ring is a five-membered aromatic heterocycle that is found in both natural and synthesized compounds. Multiple anticancer drug classes are currently available on the market, but concerns including toxicity, limited efficacy and solubility have lowered the overall therapeutic index. Therefore, the hunt for new potential chemotherapeutic agents persists. The development of imidazole as a reliable and safer alternative to anticancer treatment is generating much attention among experts. Tubulin or microtubule polymerization inhibition and changes in the structure and function of DNA, VEGF, topoisomerase, kinases, histone deacetylases and certain other proteins that affect gene expression are among the putative targets.
Collapse
Affiliation(s)
- Salik Abdullah
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Swastika Ganguly
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| |
Collapse
|
8
|
Mao YZ, Xi XX, Zhao HY, Zhang YL, Zhang SQ. Design, synthesis and evaluation of new pyrimidine derivatives as EGFR C797S tyrosine kinase inhibitors. Bioorg Med Chem Lett 2023; 91:129381. [PMID: 37336419 DOI: 10.1016/j.bmcl.2023.129381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
The clinical use of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer was limited by the drug resistance caused by EGFRC797S mutation. Therefore, in order to overcome the drug resistance, we designed and synthesized a series of 2-aminopyrimidine derivatives as EGFRC797S-TKIs. Among these compounds, compounds A5 and A13 showed significant anti-proliferative activity against the KC-0116 (EGFRdel19/T790M/C797S) cell line with high selectivity. A5 inhibited EGFR phosphorylation and induced apoptosis of KC-0116 cell, arrested KC-0116 cell at G2/M phase. Molecular docking results showed that A5 and brigatinib bind to EGFR in a similar pattern. In addition to forming two important hydrogen bonds with Met793 residue, A5 also formed a hydrogen bond with Lys745 residues, which may play an important role for the potent inhibitory activity against EGFRdel19/T790M/C797S. Based on these results, A5 turned out to be effective reversible EGFRC797S-TKIs which can be further developed.
Collapse
Affiliation(s)
- Yu-Ze Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yin-Liang Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
9
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Rahman HM, Abdel-Aziz M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: a critical review. RSC Adv 2023; 13:18825-18853. [PMID: 37350862 PMCID: PMC10282734 DOI: 10.1039/d3ra02347h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is the second most common cause of morbidity and mortality among cancer types worldwide, with non-small cell lung cancer (NSCLC) representing the majority of most cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are among the most commonly used targeted therapy to treat NSCLC. Recent years have seen the evaluation of many synthetic EGFR TKIs, most of which showed therapeutic activity in pertinent models and were classified as first, second, and third-generation. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are ineffective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism. This review covers the fourth-generation EGFR-TKIs' most recent design with their essential binding interactions, the clinical difficulties, and the potential outcomes of treating patients with EGFR mutation C797S resistant to third-generation EGFR-TKIs was also discussed. Moreover, the utilization of various therapeutic strategies, including multi-targeting drugs and combination therapies, has also been reviewed.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA) Assiut 2014101 Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
10
|
Todsaporn D, Zubenko A, Kartsev V, Aiebchun T, Mahalapbutr P, Petrou A, Geronikaki A, Divaeva L, Chekrisheva V, Yildiz I, Choowongkomon K, Rungrotmongkol T. Discovery of Novel EGFR Inhibitor Targeting Wild-Type and Mutant Forms of EGFR: In Silico and In Vitro Study. Molecules 2023; 28:molecules28073014. [PMID: 37049777 PMCID: PMC10096398 DOI: 10.3390/molecules28073014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Targeting L858R/T790M and L858R/T790M/C797S mutant EGFR is a critical challenge in developing EGFR tyrosine kinase inhibitors to overcome drug resistance in non-small cell lung cancer (NSCLC). The discovery of next-generation EGFR tyrosine kinase inhibitors (TKIs) is therefore necessary. To this end, a series of furopyridine derivatives were evaluated for their EGFR-based inhibition and antiproliferative activities using computational and biological approaches. We found that several compounds derived from virtual screening based on a molecular docking and solvated interaction energy (SIE) method showed the potential to suppress wild-type and mutant EGFR. The most promising PD13 displayed strong inhibitory activity against wild-type (IC50 of 11.64 ± 1.30 nM), L858R/T790M (IC50 of 10.51 ± 0.71 nM), which are more significant than known drugs. In addition, PD13 revealed a potent cytotoxic effect on A549 and H1975 cell lines with IC50 values of 18.09 ± 1.57 and 33.87 ± 0.86 µM, respectively. The 500-ns MD simulations indicated that PD13 formed a hydrogen bond with Met793 at the hinge region, thus creating excellent EGFR inhibitory activity. Moreover, the binding of PD13 in the hinge region of EGFR was the major determining factor in stabilizing the interactions via hydrogen bonds and van der Waals (vdW). Altogether, PD13 is a promising novel EGFR inhibitor that could be further clinically developed as fourth-generation EGFR-TKIs.
Collapse
|
11
|
Targeting cancer through recently developed purine clubbed heterocyclic scaffolds: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
14
|
Eno MS, Brubaker JD, Campbell JE, De Savi C, Guzi TJ, Williams BD, Wilson D, Wilson K, Brooijmans N, Kim J, Özen A, Perola E, Hsieh J, Brown V, Fetalvero K, Garner A, Zhang Z, Stevison F, Woessner R, Singh J, Timsit Y, Kinkema C, Medendorp C, Lee C, Albayya F, Zalutskaya A, Schalm S, Dineen TA. Discovery of BLU-945, a Reversible, Potent, and Wild-Type-Sparing Next-Generation EGFR Mutant Inhibitor for Treatment-Resistant Non-Small-Cell Lung Cancer. J Med Chem 2022; 65:9662-9677. [PMID: 35838760 PMCID: PMC9340769 DOI: 10.1021/acs.jmedchem.2c00704] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
While epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitors
(TKIs) have changed the treatment landscape for EGFR mutant (L858R
and ex19del)-driven non-small-cell lung cancer (NSCLC), most patients
will eventually develop resistance to TKIs. In the case of first-
and second-generation TKIs, up to 60% of patients will develop an
EGFR T790M mutation, while third-generation irreversible TKIs, like
osimertinib, lead to C797S as the primary on-target resistance mutation.
The development of reversible inhibitors of these resistance mutants
is often hampered by poor selectivity against wild-type EGFR, resulting
in potentially dose-limiting toxicities and a sub-optimal profile
for use in combinations. BLU-945 (compound 30) is a potent,
reversible, wild-type-sparing inhibitor of EGFR+/T790M and EGFR+/T790M/C797S
resistance mutants that maintains activity against the sensitizing
mutations, especially L858R. Pre-clinical efficacy and safety studies
supported progression of BLU-945 into clinical studies, and it is
currently in phase 1/2 clinical trials for treatment-resistant EGFR-driven
NSCLC.
Collapse
Affiliation(s)
- Meredith S Eno
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Jason D Brubaker
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - John E Campbell
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Chris De Savi
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Timothy J Guzi
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Brett D Williams
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Douglas Wilson
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Kevin Wilson
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Natasja Brooijmans
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Joseph Kim
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Ayşegül Özen
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Emanuele Perola
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - John Hsieh
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Victoria Brown
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Kristina Fetalvero
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Andrew Garner
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Zhuo Zhang
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Faith Stevison
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Rich Woessner
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Jatinder Singh
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Yoav Timsit
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Caitlin Kinkema
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Clare Medendorp
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Christopher Lee
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Faris Albayya
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Alena Zalutskaya
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Stefanie Schalm
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Thomas A Dineen
- Blueprint Medicines, 45 Sidney Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Ma W, Zhu M, Wang B, Gong Z, Du X, Yang T, Shi X, Dai B, Zhan Y, Zhang D, Ji Y, Wang Y, Li S, Zhang Y. Vandetanib drives growth arrest and promotes sensitivity to imatinib in chronic myeloid leukemia by targeting ephrin type-B receptor 4. Mol Oncol 2022; 16:2747-2765. [PMID: 35689424 PMCID: PMC9297786 DOI: 10.1002/1878-0261.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
The oncogenic role of ephrin type‐B receptor 4 (EPHB4) has been reported in many types of tumors, including chronic myeloid leukemia (CML). Here, we found that CML patients have a higher EPHB4 expression level than healthy subjects. EPHB4 knockdown inhibited growth of K562 cells (a human immortalized myelogenous leukemia cell line). In addition, transient transfection of EPHB4 siRNA led to sensitization to imatinib. These growth defects could be fully rescued by EPHB4 transfection. To identify an EPHB4‐specific inhibitor with the potential of rapid translation into the clinic, a pool of clinical compounds was screened and vandetanib was found to be most sensitive to K562 cells, which express a high level of EPHB4. Vandetanib mainly acts on the intracellular tyrosine kinase domain and interacts stably with a hydrophobic pocket. Furthermore, vandetanib downregulated EPHB4 protein via the ubiquitin‐proteasome pathway and inhibited PI3K/AKT and MAPK/ERK signaling pathways in K562 cells. Vandetanib alone significantly inhibited tumor growth in a K562 xenograft model. Furthermore, the combination of vandetanib and imatinib exhibited enhanced and synergistic growth inhibition against imatinib‐resistant K562 cells in vitro and in vivo. These findings suggest that vandetanib drives growth arrest and overcomes the resistance to imatinib in CML via targeting EPHB4.
Collapse
Affiliation(s)
- Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Bo Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Xianpeng Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Yanhong Ji
- School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Yang Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Song Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, PA, USA
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| |
Collapse
|
16
|
Fang ZY, Zhang YH, Chen CH, Zheng Q, Lv PC, Ni LQ, Sun J, Wu YF. Design, Synthesis and Molecular Docking of Novel Quinazolinone Hydrazide Derivatives as EGFR Inhibitors. Chem Biodivers 2022; 19:e202200189. [PMID: 35510593 DOI: 10.1002/cbdv.202200189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
A series of novel quinazolinone hydrazide derivatives were designed and synthesized as EGFR inhibitors. The results indicated that most of the aimed compounds had potential anti-tumor cell proliferation and EGFR inhibitory activities. In the comprehensive analysis of all the tested compounds, the target compound 9c showed the best anti-tumor cell proliferation activity, (IC50 =1.31 μM for MCF-7, IC50 =1.89 μM for HepG2, IC50 =2.10 μM for SGC), and IC50 =0.59 μM for the EGFR inhibitory activity. Docking results showed that compound 9c could ideally insert the active site and interact with the critical amino acid residues (Val702, Lys721, Met769, Asp831) in the active site.
Collapse
Affiliation(s)
- Ze-Yu Fang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Yi-Heng Zhang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Chong-Hao Chen
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Qi Zheng
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Peng-Cheng Lv
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Lei-Qiang Ni
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Yuan-Feng Wu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| |
Collapse
|
17
|
Wang Z, Dai H, Si X, Gao C, Liu L, Zhang L, Zhang Y, Song Y, Zhao P, Zheng J, Ke Y, Liu H, Zhang Q. Synthesis and Antitumor Activity of 2,4,6-Trisubstituted Novel Quinazoline Derivatives Containing Trifluoromethyl. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Shaikh M, Shinde Y, Pawara R, Noolvi M, Surana S, Ahmad I, Patel H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J Med Chem 2021; 65:1008-1046. [PMID: 34323489 DOI: 10.1021/acs.jmedchem.1c00876] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Collapse
Affiliation(s)
- Matin Shaikh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Yashodeep Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Rahul Pawara
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Malleshappa Noolvi
- Shree Dhanvantari College of Pharmacy, Kim, Surat, Gujarat, India 394111
| | - Sanjay Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Iqrar Ahmad
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| |
Collapse
|
19
|
Sharma P, LaRosa C, Antwi J, Govindarajan R, Werbovetz KA. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021; 26:molecules26144213. [PMID: 34299488 PMCID: PMC8307698 DOI: 10.3390/molecules26144213] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Nitrogen-containing heterocyclic rings are common structural components of marketed drugs. Among these heterocycles, imidazole/fused imidazole rings are present in a wide range of bioactive compounds. The unique properties of such structures, including high polarity and the ability to participate in hydrogen bonding and coordination chemistry, allow them to interact with a wide range of biomolecules, and imidazole-/fused imidazole-containing compounds are reported to have a broad spectrum of biological activities. This review summarizes recent reports of imidazole/fused imidazole derivatives as anticancer agents appearing in the peer-reviewed literature from 2018 through 2020. Such molecules have been shown to modulate various targets, including microtubules, tyrosine and serine-threonine kinases, histone deacetylases, p53-Murine Double Minute 2 (MDM2) protein, poly (ADP-ribose) polymerase (PARP), G-quadraplexes, and other targets. Imidazole-containing compounds that display anticancer activity by unknown/undefined mechanisms are also described, as well as key features of structure-activity relationships. This review is intended to provide an overview of recent advances in imidazole-based anticancer drug discovery and development, as well as inspire the design and synthesis of new anticancer molecules.
Collapse
Affiliation(s)
- Pankaj Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Chris LaRosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Janet Antwi
- Division of Mathematics, Computer & Natural Sciences Division, Ohio Dominican University, Columbus, OH 43219, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
- Correspondence:
| |
Collapse
|
20
|
Discovery of potent small molecule PROTACs targeting mutant EGFR. Eur J Med Chem 2020; 208:112781. [DOI: 10.1016/j.ejmech.2020.112781] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
|
21
|
Liu Y, Li Y, Wang J. [Research Progress of New Generation EGFR-TKIs after Third-generation]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:970-975. [PMID: 32773008 PMCID: PMC7679226 DOI: 10.3779/j.issn.1009-3419.2020.102.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
肺癌是全球死亡率最高的癌种。第一、二代表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitors, EGFR-TKIs)的出现,在一定程度上极大地提高了非小细胞肺癌(non-small cell lung cancer, NSCLC)患者的生存期及生活质量,但大多数患者在经过一段时间的无进展生存期后会产生耐药性,其中以T790M突变为主要耐药机制。针对此耐药突变出现的是以奥希替尼为代表的第三代EGFR-TKIs,其效果显著,然而仍不可避免的出现耐药性,如:C797S突变、间质表皮转化(mesenchymal-epithelial transition, MET)、RAS突变、BRAF突变、小细胞肺癌(small cell lung cancer, SCLC)转化、上皮间质细胞转化(epithelial mesenchymal transition, EMT)等。但是目前第三代EGFR-TKIs耐药后并没有标准有效的治疗方案。故本文主要阐述三代后的新一代EGFR-TKIs的研究进展,为后续的研究及治疗提供一定的参考。
Collapse
Affiliation(s)
- Yuanyuan Liu
- First Department of Comprehensive Treatment of Tumors, Tangshan People's Hospital,
North China University of Science and Technology, Tangshan 063000, China
| | - Yihui Li
- First Department of Comprehensive Treatment of Tumors, Tangshan People's Hospital,
North China University of Science and Technology, Tangshan 063000, China
| | - Jiangong Wang
- First Department of Comprehensive Treatment of Tumors, Tangshan People's Hospital,
North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
22
|
Ayati A, Moghimi S, Salarinejad S, Safavi M, Pouramiri B, Foroumadi A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg Chem 2020; 99:103811. [PMID: 32278207 DOI: 10.1016/j.bioorg.2020.103811] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
The identification of molecular agents inhibiting specific functions in cancer cells progression is considered as one of the most successful plans in cancer treatment. The epidermal growth factor receptor (EGFR) over-activation is observed in a vast number of cancers, so, targeting EGFR and its downstream signaling cascades are regarded as a rational and valuable approach in cancer therapy. Several synthetic EGFR tyrosine kinase inhibitors (TKIs) have been evaluated in recent years, mostly exhibited clinical efficacy in relevant models and categorized into first, second, third and fourth-generation. However, studies are still ongoing to find more efficient EGFR inhibitors in light of the resistance to the current inhibitors. In this review, the importance of targeting EGFR signaling pathway in cancer therapy and related epigenetic mutations are highlighted. The recent advances on the discovery and development of different EGFR inhibitors and the use of various therapeutic strategies such as multi-targeting agents and combination therapies have also been reviewed.
Collapse
Affiliation(s)
- Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, P.O. Box 3353-5111, Tehran, Iran
| | - Behjat Pouramiri
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Yi R, Liu S, Gao H, Liang Z, Xu X, Li N. Iodine-promoted direct thiolation (selenylation) of imidazole with disulfides (diselenide): A convenient and metal-free protocol for the synthesis of 2-arylthio(seleno)imidazole. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Ibrahim MT, Uzairu A, Shallangwa GA, Uba S. In-silico activity prediction and docking studies of some 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9h-purine derivatives as Anti-proliferative agents. Heliyon 2020; 6:e03158. [PMID: 32042954 PMCID: PMC7002806 DOI: 10.1016/j.heliyon.2020.e03158] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
In-silico activity prediction was performed to predict new inhibitory activities of 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9h-purine derivatives as anti-proliferative agents using QSAR technique. The anti-proliferative agents were optimized using Density Functional Theory (DFT) method utilizing the B3LYP/6-31G* level of theory. Genetic Function Algorithm (GFA) was used to build the QSAR models. Out of the models built, the best one was selected and reported because of its fitness statistically with the following assessment parameters: R2trng = 0.919035, R2adj = 0.893733, Q2cv = 0.866475, R2test = 0.636217, and LOF = 0.215884. The selected model was further subjected to other assessment such as VIF, Y-scrambling test, applicability domain and found to be statistically significant. The binding mode of some selected 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine (ligands) in the active site of EGFR-tyrosine kinase (EGFR-TK) (receptor) was studied via Molecular docking. Molecule 22 was identified to have the highest binding energy (-10.4 kcal/mol) among the other selected ligands which it might be as a result of hydrogen interactions formed with MET793 (2.48599 Å, 2.04522 Å) & THR854 (3.76616 Å) amino acid residues and hydrophobic/other interactions with amino acid residues (LEU718, LEU844, MET766, VAL726, ALA743, LYS745 and MET790) in the active site of EGFR-tyrosine kinase (EGFR-TK). The drug-likeness of these selected anti-proliferative agents were predicted via the pharmacokinetics profile of the molecules utilizing SWISS ADME. The anti-proliferative agents were found to be orally safe by not having more than 1 violation of the Lipinski's rule of five. This research proposed a way for designing potent anti-proliferative agents against their target enzyme.
Collapse
|
25
|
Lei H, Fan S, Zhang H, Liu YJ, Hei YY, Zhang JJ, Zheng AQ, Xin M, Zhang SQ. Discovery of novel 9-heterocyclyl substituted 9H-purines as L858R/T790M/C797S mutant EGFR tyrosine kinase inhibitors. Eur J Med Chem 2019; 186:111888. [PMID: 31787359 DOI: 10.1016/j.ejmech.2019.111888] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Targeting L858R/T790M/C797S mutant EGFR is a major challenge in the new-generation EGFR tyrosine kinase inhibitors development for conquering drug resistant NSCLC. In this study, a series of novel 9-heterocyclyl substituted 9H-purine derivatives were designed as EGFRL858 R/T790 M/C797S tyrosine kinase inhibitors. Among these compounds, D4, D9, D11 and D12 showed significantly potent anti-proliferation and EGFRL858 R/T790 M/C797S inhibition activity. In particular, the most potent compound D9 showed anti-proliferation against HCC827 and H1975 cell lines with the IC50 values of 0.00088 and 0.20 μM, respectively. And D9 inhibited the EGFRL858R/T790M/C797S with an IC50 value of 18 nM. Furtherly, D9 could significantly suppress the EGFR phosphorylation, induce the apoptosis, arrest cell cycle at G0/G1, and inhibit colony formation in HCC827 cell line by a concentration-dependent manner. Molecular docking indicated that the introduction of a cyclopropylsulfonamide group in D9 led to the formation of additional two hydrogen bonds with mutant Ser797 which played key roles in generating efficient EGFRL858 R/T790 M/C797S inhibitory activity. These findings strongly indicated that 9-heterocyclyl substituted 9H-purine derivatives were promising L858R/T790M/C797S mutant EGFR-TKIs. The introduction of extra hydrogen bond interaction with mutant Ser797 is efficient method for the design of the fourth-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yan-Jie Liu
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jun-Jie Zhang
- School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - A-Qun Zheng
- School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
26
|
Engelhardt H, Böse D, Petronczki M, Scharn D, Bader G, Baum A, Bergner A, Chong E, Döbel S, Egger G, Engelhardt C, Ettmayer P, Fuchs JE, Gerstberger T, Gonnella N, Grimm A, Grondal E, Haddad N, Hopfgartner B, Kousek R, Krawiec M, Kriz M, Lamarre L, Leung J, Mayer M, Patel ND, Simov BP, Reeves JT, Schnitzer R, Schrenk A, Sharps B, Solca F, Stadtmüller H, Tan Z, Wunberg T, Zoephel A, McConnell DB. Start Selective and Rigidify: The Discovery Path toward a Next Generation of EGFR Tyrosine Kinase Inhibitors. J Med Chem 2019; 62:10272-10293. [PMID: 31689114 DOI: 10.1021/acs.jmedchem.9b01169] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.
Collapse
Affiliation(s)
- Harald Engelhardt
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Dietrich Böse
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Mark Petronczki
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Anke Baum
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Bergner
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Eugene Chong
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Sandra Döbel
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Georg Egger
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Christian Engelhardt
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Julian E Fuchs
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nina Gonnella
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Andreas Grimm
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Elisabeth Grondal
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nizar Haddad
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Barbara Hopfgartner
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Mariusz Krawiec
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Monika Kriz
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Lyne Lamarre
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Joyce Leung
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Nitinchandra D Patel
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Biljana Peric Simov
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Jonathan T Reeves
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Renate Schnitzer
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Schrenk
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Bernadette Sharps
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Heinz Stadtmüller
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Zhulin Tan
- Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877 , United States
| | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Andreas Zoephel
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co KG , Dr-Boehringer-Gasse 5-11 , Vienna 1120 , Austria
| |
Collapse
|
27
|
Synthesis and biological evaluation of irreversible EGFR tyrosine kinase inhibitors containing pyrido[3,4-d]pyrimidine scaffold. Bioorg Med Chem 2018; 26:3619-3633. [DOI: 10.1016/j.bmc.2018.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
|