1
|
Schultz PG. Synthesis at the Interface of Chemistry and Biology. Acc Chem Res 2024; 57:2631-2642. [PMID: 39198974 PMCID: PMC11443489 DOI: 10.1021/acs.accounts.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
ConspectusChemical synthesis as a tool to control the structure and properties of matter is at the heart of chemistry─from the synthesis of fine chemicals and polymers to drugs and solid-state materials. But as the field evolves to tackle larger and larger molecules and molecular complexes, the traditional tools of synthetic chemistry become limiting. In contrast, Mother Nature has developed very different strategies to create the macromolecules and molecular systems that make up the living cell. Our focus has been to ask whether we can use the synthetic strategies and machinery of Mother Nature, together with modern chemical tools, to create new macromolecules, and even whole organisms with properties not existing in nature. One such example involves reprogramming the complex, multicomponent machinery of ribosomal protein synthesis to add new building blocks to the genetic code, overcoming a billion-year constraint on the chemical nature of proteins. This methodology exploits the concept of bioorthogonality to add unique codons, tRNAs and aminoacyl-tRNA synthetases to cells to encode amino acids with physical, chemical and biological properties not found in nature. As a result, we can make precise changes to the structures of proteins, much like those made by chemists to small molecules and beyond those possible by biological approaches alone. This technology has made it possible to probe protein structure and function in vitro and in vivo in ways heretofore not possible, and to make therapeutic proteins with enhanced pharmacology. A second example involves exploiting the molecular diversity of the humoral immune system together with synthetic transition state analogues to make catalytic antibodies, and then expanding this diversity-based strategy (new to chemists at the time) to drug discovery and materials science. This work ushered in a new nature-inspired synthetic strategy in which large libraries of natural or synthetic molecules are designed and then rationally selected or screened for new function, increasing the efficiency by which we can explore chemical space for new physical, chemical and biological properties. A final example is the use of large chemical libraries, robotics and high throughput phenotypic cellular screens to identify small synthetic molecules that can be used to probe and manipulate the complex biology of the cell, exemplified by druglike molecules that control cell fate. This approach provides new insights into complex biology that complements genomic approaches and can lead to new drugs that act by novel mechanisms of action, for example to selectively regenerate tissues. These and other advances have been made possible by using our knowledge of molecular structure and reactivity hand in hand with our understanding of and ability to manipulate the complex machinery of living cells, opening a new frontier in synthesis. This Account overviews the work in my lab and with our collaborators, from our early days to the present, that revolves around this central theme.
Collapse
Affiliation(s)
- Peter G. Schultz
- Department of Chemistry,
L.S. Sam Skaggs Presidential Chair, Scripps
Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Wong JYK, Mukherjee R, Miao J, Bilyk O, Triana V, Miskolzie M, Henninot A, Dwyer JJ, Kharchenko S, Iampolska A, Volochnyuk DM, Lin YS, Postovit LM, Derda R. Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL. Chem Sci 2021; 12:9694-9703. [PMID: 34349940 PMCID: PMC8294009 DOI: 10.1039/d1sc01916c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
In this manuscript, we developed a two-fold symmetric linchpin (TSL) that converts readily available phage-displayed peptides libraries made of 20 common amino acids to genetically-encoded libraries of bicyclic peptides displayed on phage. TSL combines an aldehyde-reactive group and two thiol-reactive groups; it bridges two side chains of cysteine [C] with an N-terminal aldehyde group derived from the N-terminal serine [S], yielding a novel bicyclic topology that lacks a free N-terminus. Phage display libraries of SX1CX2X3X4X5X6X7C sequences, where X is any amino acid but Cys, were converted to a library of bicyclic TSL-[S]X1[C]X2X3X4X5X6X7[C] peptides in 45 ± 15% yield. Using this library and protein morphogen NODAL as a target, we discovered bicyclic macrocycles that specifically antagonize NODAL-induced signaling in cancer cells. At a 10 μM concentration, two discovered bicyclic peptides completely suppressed NODAL-induced phosphorylation of SMAD2 in P19 embryonic carcinoma cells. The TSL-[S]Y[C]KRAHKN[C] bicycle inhibited NODAL-induced proliferation of NODAL-TYK-nu ovarian carcinoma cells with apparent IC50 of 1 μM. The same bicycle at 10 μM concentration did not affect the growth of the control TYK-nu cells. TSL-bicycles remained stable over the course of the 72 hour-long assays in a serum-rich cell-culture medium. We further observed general stability in mouse serum and in a mixture of proteases (Pronase™) for 21 diverse bicyclic macrocycles of different ring sizes, amino acid sequences, and cross-linker geometries. TSL-constrained peptides to expand the previously reported repertoire of phage-displayed bicyclic architectures formed by cross-linking Cys side chains. We anticipate that it will aid the discovery of proteolytically stable bicyclic inhibitors for a variety of protein targets.
Collapse
Affiliation(s)
- Jeffrey Y-K Wong
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Raja Mukherjee
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Jiayuan Miao
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | - Olena Bilyk
- Department of Experimental Oncology, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Vivian Triana
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | | | - John J Dwyer
- Ferring Research Institute San Diego California 92121 USA
| | | | - Anna Iampolska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | | | - Yu-Shan Lin
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | - Lynne-Marie Postovit
- Department of Experimental Oncology, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
3
|
Ge Z, Li X, Cao X, Wang R, Hu W, Gen L, Han S, Shang Y, Liu Y, Zhou JH. Viral adaption of staphylococcal phage: A genome-based analysis of the selective preference based on codon usage Bias. Genomics 2020; 112:4657-4665. [PMID: 32818632 DOI: 10.1016/j.ygeno.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/09/2022]
Abstract
Given the high therapeutic value of the staphylococcal phage, the genome co-evolution of the phage and the host has gained great attention. Though the genome-wide AT richness in staphylococcal phages has been well-studied with nucleotide usage bias, here we proved that host factor, lifestyle and taxonomy are also important factors in understanding the phage nucleotide usages bias using information entropy formula. Such correlation is especially prominent when it comes to the synonymous codon usages of staphylococcal phages, despite the overall scattered codon usage pattern represented by principal component analysis. This strong relationship is explained by nucleotide skew which testified that the usage biases of nucleotide at different codon positions are acting on synonymous codons. Therefore, our study reveals a hidden relationship of genome evolution with host limitation and phagic phenotype, providing new insight into phage genome evolution at genetic level.
Collapse
Affiliation(s)
- Zhiyi Ge
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Wen Hu
- Gansu Police Vocational College, Lanzhou 730046, Gansu, PR China
| | - Ling Gen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Shengyi Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China; The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu Province, PR China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China.
| |
Collapse
|