1
|
Southwell JW, Wilson KS, Thomas GH, Duhme-Klair AK. Enhancement of growth media for extreme iron limitation in Escherichia coli. Access Microbiol 2024; 6:000735.v4. [PMID: 39045240 PMCID: PMC11261726 DOI: 10.1099/acmi.0.000735.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Iron is an essential nutrient for microbial growth and bacteria have evolved numerous routes to solubilize and scavenge this biometal, which is often present at very low concentrations in host tissue. We recently used a MOPS-based medium to induce iron limitation in Escherichia coli K-12 during the characterization of novel siderophore-conjugated antibiotics. In this study we confirm that growth media derived from commercially available M9 salts are unsuitable for studies of iron-limited growth, probably through the contamination of the sodium phosphate buffer components with over 100 µM iron. In contrast, MOPS-based media that are treated with metal-binding Chelex resin allow the free iron concentration to be reduced to growth-limiting levels. Despite these measures a small amount of E. coli growth is still observed in these iron-depleted media. By growing E. coli in conditions that theoretically increase the demand for iron-dependent enzymes, namely by replacing the glucose carbon source for acetate and by switching to a microaerobic atmosphere, we can reduce background growth even further. Finally, we demonstrate that by adding an exogeneous siderophore to the growth media which is poorly used by E. coli, we can completely prevent growth, perhaps mimicking the situation in host tissue. In conclusion, this short study provides practical experimental insight into low iron media and how to augment the growth conditions of E. coli for extreme iron-limited growth.
Collapse
Affiliation(s)
- James W. Southwell
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Keith S. Wilson
- York Structural Biology Laboratory, University of York, Heslington, York, YO10 5DD, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
2
|
Liu W, Zhu C, Gao S, Ma K, Zhang S, Du Q, Sui K, Liu C, Chi Z. A biosensor encompassing fusarinine C-magnetic nanoparticles and aptamer-red/green carbon dots for dual-channel fluorescent and RGB discrimination of Campylobacter and Aliarcobacter. Talanta 2024; 266:125085. [PMID: 37619471 DOI: 10.1016/j.talanta.2023.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The diarrhea pathogens Campylobacter and Aliarcobacter are similar in morphology and their leading symptoms, making them difficult to be differentially diagnosed. Herein, we report a biosensor with two modules to differentiate the genera-representative species of C. jejuni and A. butzleri. Module 1 was fusarinine C-decorated magnetic nanoparticles; module 2 consisted of C. jejuni-specific aptamer modified with red-emitting carbon dots (CDs) and A. butzleri-specific aptamer-modified green-emitting CDs, consisting non-interfering dual-fluorescence detection channels. Module 1 was used to selectively capture C. jejuni and A. butzleri from an un-cultured sample, and the specific CDs in module 2 would then recognize and bind to their counterpart bacteria when subjected to the collected module 1-bacteria complex. By measuring the fluorescence intensities from the CDs-bound bacteria, the abundance of each bacterium could be differentially indicated. This biosensor exhibited a wide detection range of up to 1 × 107 CFU/mL and the lowest limit of detection (LOD) of 1 CFU/mL, for each bacterium. Thus, the biosensor with dual-fluorescent channels facilitated a culture-independent, ultrasensitive and discriminative detection of C. jejuni and A. butzleri. Remarkably, this fluorescent detection could be transformed into RGB color indication to render the visual discrimination. After the biosensor was coupled with microfluidics, a biosensing platform was developed, which could render fluorescent and RGB differentiation of the two bacteria in human stool or chicken broilers, achieving a LOD of 5 CFU/mL and turnaround time of 65 min. This work established the first biosensor-based methodology for the discriminative detection of Campylobacter and Aliarcobacter in real samples.
Collapse
Affiliation(s)
- Weixing Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Shaoqian Gao
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Shangxian Zhang
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Qingbao Du
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China; Qingdao Sinova-HK Biotechnology Co., Ltd, No. 5138 Haixi Middle Road, 266423, Qingdao, China
| | - Kangmin Sui
- Qingdao Municipal Hospital, University of Health and Rehabilitation Science, No. 5 Donghai Middle Road, 266071, Qingdao, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China.
| |
Collapse
|
3
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
4
|
Nodwell MB, Britton R. Enterobactin on a Bead: Parallel, Solid Phase Siderophore Synthesis Reveals Structure-Activity Relationships for Iron Uptake in Bacteria. ACS Infect Dis 2021; 7:153-161. [PMID: 33290047 DOI: 10.1021/acsinfecdis.0c00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A solid-phase platform for the precise and sequential synthesis of enterobactin analogues is described. This chemistry unites the power of solid-phase peptide synthesis with the unique opportunities and applications offered by siderophore chemistry. Here, a series of hybrid enterobactin hydroxamate/catecholate (HEHC) analogues were synthesized using both catechols and amino acid derived hydroxmate chelators. The HEHC analogues were evaluated for their ability to bind free iron and to promote growth in siderophore-auxotrophic mutant bacteria. We find that, in contrast to S. aureus or E. coli, a number of HEHC analogues promote growth in P. aeruginosa and structure-activity relationships (SARs) exist for the growth promotion via HEHC analogues in this organism.
Collapse
Affiliation(s)
- Matthew B. Nodwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S2, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S2, Canada
| |
Collapse
|
5
|
Mayerthaler F, Finley MF, Pfeifer TA, Antolin AA. Meeting Proceedings from ICBS 2018- Toward Translational Impact. ACS Chem Biol 2019; 14:567-578. [PMID: 30860357 DOI: 10.1021/acschembio.9b00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Michael F. Finley
- Janssen Research & Development, Spring House, Pennsylvania 19477, United States
| | - Tom A. Pfeifer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Albert A. Antolin
- The Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
- The Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| |
Collapse
|