1
|
Grigoreva TA, Novikova DS, Melino G, Barlev NA, Tribulovich VG. Ubiquitin recruiting chimera: more than just a PROTAC. Biol Direct 2024; 19:55. [PMID: 38978100 PMCID: PMC11232244 DOI: 10.1186/s13062-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| | - Daria S Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Nick A Barlev
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russia
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Vyacheslav G Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| |
Collapse
|
2
|
Grigoreva TA, Vorona SV, Novikova DS, Tribulovich VG. Analysis of P-Glycoprotein Transport Cycle Reveals a New Way to Identify Efflux Inhibitors. ACS OMEGA 2022; 7:42835-42844. [PMID: 36467933 PMCID: PMC9713869 DOI: 10.1021/acsomega.2c04768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
P-glycoprotein (P-gp) is found to be of considerable interest for the design of drugs capable of treating chemoresistant tumors. This transporter is an interesting target for which an efficient approach has not yet been developed in terms of computer simulation. In this work, we use a combination of docking, molecular dynamics, and metadynamics to fully explore the states that occur during the capture of a ligand and subsequent efflux by P-gp. The proposed approach allowed us to substantiate a number of experimentally established facts, as well as to develop a new criterion for identifying potential P-gp inhibitors.
Collapse
|
3
|
Grigoreva TA, Sagaidak AV, Vorona SV, Novikova DS, Tribulovich VG. ATP Mimetic Attack on the Nucleotide-Binding Domain to Overcome ABC Transporter Mediated Chemoresistance. ACS Med Chem Lett 2022; 13:1848-1855. [DOI: 10.1021/acsmedchemlett.2c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tatyana A. Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Aleksandra V. Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Svetlana V. Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Daria S. Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Vyacheslav G. Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| |
Collapse
|
4
|
Paramonova P, Bakulina O, Nabiyev A, Dar'in D, Krasavin M. Castagnoli‐Cushman Reaction of 3‐Aryl Glutaric Acids: A Convenient, Diastereoselective Reaction for 6‐Oxo‐2,4‐diarylpiperidine‐3‐carboxylic Acid Scaffold. ChemistrySelect 2022. [DOI: 10.1002/slct.202104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina Paramonova
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Olga Bakulina
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Alem Nabiyev
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Dmitry Dar'in
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
| | - Mikhail Krasavin
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
- Immanuel Kant Baltic Federal University Kaliningrad 236041 Russia
| |
Collapse
|
5
|
Grigoreva T, Sagaidak A, Romanova A, Novikova D, Garabadzhiu A, Tribulovich V. Establishment of drug-resistant cell lines under the treatment with chemicals acting through different mechanisms. Chem Biol Interact 2021; 344:109510. [PMID: 33974899 DOI: 10.1016/j.cbi.2021.109510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
The problem of chemoresistance development is an inescapable flipside of modern oncotherapy, in particular for сolorectal cancer patients. The search for or development of drugs effective against resistant tumors involves the use of model resistant cell lines in vitro. To obtain such lines, we reproduced the development of chemoresistance of human colon adenocarcinoma cells under the treatment with drugs of different mechanisms, a cytostatic (paclitaxel) and a targeted agent (Nutlin-3a, an inhibitor of p53-Mdm2 protein-protein interaction). In each case, we gradually increased the content of the substance in the medium, starting from effective concentrations that do not cause total cell death. When studying the lines resistant to the corresponding drug, we noted a reduced sensitivity to the drug of another mechanism of action. Analysis of the original and resistant lines showed that the cells use the universal efflux defense mechanism. The observed effect can be partially neutralized using inhibitors of the ABC transport proteins, including P-glycoprotein, known for its oncoprotective function. The role of the latter was confirmed by real-time RT-PCR and Western blotting.
Collapse
Affiliation(s)
- Tatyana Grigoreva
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia.
| | - Aleksandra Sagaidak
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Angelina Romanova
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Daria Novikova
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Aleksander Garabadzhiu
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Viacheslav Tribulovich
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| |
Collapse
|
6
|
Microwave accelerated Castagnoli-Cushman reaction: Synthesis of novel 6,7,8,9-tetrahydropyrido[3′,2′:4,5]pyrrolo[1,2-a]pyrazines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Novikova DS, Grigoreva TA, Ivanov GS, Melino G, Barlev NA, Tribulovich VG. Activating Effect of 3‐Benzylidene Oxindoles on AMPK: From Computer Simulation to High‐Content Screening. ChemMedChem 2020; 15:2521-2529. [DOI: 10.1002/cmdc.202000579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daria S. Novikova
- Laboratory of Molecular Pharmacology Saint Petersburg State Institute of Technology (Technical University) Moskovskii pr. 26 190013 Saint Petersburg Russia
| | - Tatyana A. Grigoreva
- Laboratory of Molecular Pharmacology Saint Petersburg State Institute of Technology (Technical University) Moskovskii pr. 26 190013 Saint Petersburg Russia
| | - Gleb S. Ivanov
- Laboratory of Molecular Pharmacology Saint Petersburg State Institute of Technology (Technical University) Moskovskii pr. 26 190013 Saint Petersburg Russia
- Laboratory of Regulation of Gene Expression Institute of Cytology RAS Tikhoretskii pr. 4 194064 Saint Petersburg Russia
| | - Gerry Melino
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Nickolai A. Barlev
- Laboratory of Regulation of Gene Expression Institute of Cytology RAS Tikhoretskii pr. 4 194064 Saint Petersburg Russia
| | - Vyacheslav G. Tribulovich
- Laboratory of Molecular Pharmacology Saint Petersburg State Institute of Technology (Technical University) Moskovskii pr. 26 190013 Saint Petersburg Russia
| |
Collapse
|
8
|
Grigoreva T, Romanova A, Sagaidak A, Vorona S, Novikova D, Tribulovich V. Mdm2 inhibitors as a platform for the design of P-glycoprotein inhibitors. Bioorg Med Chem Lett 2020; 30:127424. [DOI: 10.1016/j.bmcl.2020.127424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 01/21/2023]
|
9
|
Simulation of MDM2 N-terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2-p53 protein–protein interaction. J Comput Aided Mol Des 2019; 34:55-70. [DOI: 10.1007/s10822-019-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
10
|
From random to rational: A discovery approach to selective subnanomolar inhibitors of human carbonic anhydrase IV based on the Castagnoli-Cushman multicomponent reaction. Eur J Med Chem 2019; 182:111642. [DOI: 10.1016/j.ejmech.2019.111642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
|