1
|
Fuchi Y, Murase H, Kai R, Kurata K, Karasawa S, Sasaki S. Artificial Host Molecules to Covalently Capture 8-Nitro-cGMP in Neutral Aqueous Solutions and in Cells. Bioconjug Chem 2021; 32:385-393. [PMID: 33529519 DOI: 10.1021/acs.bioconjchem.1c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New 1,3-diazaphenoxazine derivatives (nitroG-Grasp-Guanidine, NGG) have been developed to covalently capture 8-nitro-cGMP in neutral aqueous solutions, which furnish a thiol reactive group to displace the 8-nitro group and a guanidine unit for interaction with the cyclic phosphate. The thiol group was introduced to the 1,3-diazaphenoxazine skeleton through a 2-aminobenzylthiol group (NGG-H) and its 4-methyl (NGG-pMe) and 6-methyl (NGG-oMe) substituted derivatives. The covalent adducts were formed between the NGG derivatives and 8-nitro-cGMP in neutral aqueous solutions. Among the NGG derivatives, the one with the 6-methyl group (NGG-oMe) exhibited the most efficient capture reaction. Furthermore, NGG-H showed a cell permeability into HEK-293 and RAW 264.7 cells and reduced the intracellular 8-nitro-cGMP level. The NGG derivatives developed in this study would become a valuable tool to study the intracellular role of 8-nitro-cGMP.
Collapse
Affiliation(s)
- Yasufumi Fuchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.,Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hirotaka Murase
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan
| | - Ryosuke Kai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kakeru Kurata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.,Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan
| |
Collapse
|
2
|
Iwanaga H. Photoluminescence Properties of Eu(III) Complexes with Thienyl-Substituted Diphosphine Dioxide Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Iwanaga
- Corporate Research & Development Center, Research & Development Division, Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, Kanagawa 212-8582, Japan
| |
Collapse
|
3
|
Sasaki S. Development of Novel Functional Molecules Targeting DNA and RNA. Chem Pharm Bull (Tokyo) 2019; 67:505-518. [PMID: 31155555 DOI: 10.1248/cpb.c19-00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleic acid therapeutics such as antisense and small interfering RNA (siRNA) have attracted increasing attention as innovative medicines that interfere with and/or modify gene expression systems. We have developed new functional oligonucleotides that can target DNA and RNA with high efficiency and selectivity. This review summarizes our achievements, including (1) the formation of non-natural triplex DNA for sequence-specific inhibition of transcription; (2) artificial receptor molecules for 8-oxidized-guanosine nucleosides; and (3) reactive oligonucleotides with a cross-linking agent or a functionality-transfer nucleoside for RNA pinpoint modification.
Collapse
Affiliation(s)
- Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
4
|
Murase H, Nagatsugi F. Development of the binding molecules for the RNA higher-order structures based on the guanine-recognition by the G-clamp. Bioorg Med Chem Lett 2019; 29:1320-1324. [PMID: 30956013 DOI: 10.1016/j.bmcl.2019.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
RNA higher-order structures play an important role for control of the gene expression, and the small molecules binding to these structures have potential to act as interfering agents in the RNA-mediated-pathway. In this study, we synthesized new RNA binding molecules based on the G-clamp structure and evaluated their binding properties using the model RNA. The monomeric G-clamp ligand exhibited a fluorescence quenching with RNA-binding. The dimeric G-clamp ligand showed a significant fluorescence OFF/ON response to the RNA hairpin structure containing the guanines, indicating a high affinity of the G-clamp dimer to two neighboring guanines located in the RNA hairpin loop.
Collapse
Affiliation(s)
- Hirotaka Murase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan.
| |
Collapse
|
5
|
Aulsebrook ML, Starck M, Grace MR, Graham B, Thordarson P, Pal R, Tuck KL. Interaction of Nucleotides with a Trinuclear Terbium(III)-Dizinc(II) Complex: Efficient Sensitization of Terbium Luminescence by Guanosine Monophosphate and Application to Real-Time Monitoring of Phosphodiesterase Activity. Inorg Chem 2018; 58:495-505. [PMID: 30561998 DOI: 10.1021/acs.inorgchem.8b02731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in-depth study of the interaction of a trinuclear terbium(III)-dizinc(II) complex with an array of nucleotides differing in the type of nucleobase and number of phosphate groups, as well as cyclic versus acyclic variants, is presented. The study examined the nature of the interaction and the efficiency at which guanine was able to sensitize terbium(III) luminescence. Competitive binding and titration studies were performed to help establish the nature/mode of the interactions. These established that (1) interaction occurs by the coordination of phosphate groups to zinc(II) (in addition to uridine in the case of uridine monophosphate), (2) acyclic nucleotides bind more strongly than cyclic counterparts because of their higher negative charge, (3) guanine-containing nucleotides are able to sensitize terbium(III) luminescence with the efficiency of sensitization following the order guanosine monophosphate (GMP) > guanosine diphosphate > guanosine triphosphate because of the mode of binding, and (4) nucleoside monophosphates bind to a single zinc(II) ion, whereas di- and triphosphates appear to bind in a bridging mode between two host molecules. Furthermore, it has been shown that guanine is a sensitizer of terbium(III) luminescence. On the basis of the ability of GMP to effectively sensitize terbium(III)-based luminescence while cyclic GMP (cGMP) does not, the complex has been utilized to monitor the catalytic conversion of cGMP to GMP by a phosphodiesterase enzyme in real time using time-gated luminescence on a benchtop fluorimeter. The complex has the potential to find broad application in monitoring the activity of enzymes that process nucleotides (co)substrates, including high-throughput drug-screening programs.
Collapse
Affiliation(s)
| | - Matthieu Starck
- Department of Chemistry , Durham University , Durham DH1 3LE , U.K
| | - Michael R Grace
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Robert Pal
- Department of Chemistry , Durham University , Durham DH1 3LE , U.K
| | - Kellie L Tuck
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|