1
|
Schatz D, Baumert ME, Kersten MC, Schneider FM, Nielsen MB, Hansmann MM, Wegner HA. para-Aminoazobenzenes-Bipolar Redox-Active Molecules. Angew Chem Int Ed Engl 2024; 63:e202405618. [PMID: 38869230 DOI: 10.1002/anie.202405618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Azobenzenes (ABs) are versatile compounds featured in numerous applications for energy storage systems, such as solar thermal storages or phase change materials. Additionally, the reversible one-electron reduction of these diazenes to the nitrogen-based radical anion has been used in battery applications. Although the oxidation of ABs is normally irreversible, 4,4'-diamino substitution allows a reversible 2e- oxidation, which is attributed to the formation of a stable bis-quinoidal structure. Herein, we present a system that shows a bipolar redox behaviour. In this way, ABs can serve not only as anolytes, but also as catholytes. The resulting redox potentials can be tailored by suitable amine- and ring-substitution. For the first time, the solid-state structure of the oxidized form could be characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | - Marcel E Baumert
- Faculty of Chemistry and Chemical Biology (CCB), Technical University of Dortmund, Otto-Hahn Str. 6., 44227, Dortmund, Germany
| | - Marie C Kersten
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | - Finn M Schneider
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | | | - Max M Hansmann
- Faculty of Chemistry and Chemical Biology (CCB), Technical University of Dortmund, Otto-Hahn Str. 6., 44227, Dortmund, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| |
Collapse
|
2
|
Discovery of a Benzimidazole-based Dual FLT3/TrKA Inhibitor Targeting Acute Myeloid Leukemia. Bioorg Med Chem 2021; 56:116596. [DOI: 10.1016/j.bmc.2021.116596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
|
3
|
Wu Y, Xu S, Wang H, Shao D, Qi Q, Lu Y, Ma L, Zhou J, Hu W, Gao W, Chen J. Directing Group Enables Electrochemical Selectively Meta-Bromination of Pyridines under Mild Conditions. J Org Chem 2021; 86:16144-16150. [PMID: 34128672 DOI: 10.1021/acs.joc.1c00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Without the use of catalysts and oxidants, a facile and sustainable electrochemical bromination protocol was developed. By introducing the directing groups, the regioselectivity of pyridine derivatives could be controlled at the meta-position utilizing the inexpensive and safe bromine salts at room temperature. A variety of brominated pyridine derivatives were obtained in 28-95% yields, and the reaction could be readily performed at a gram scale. By combining the installation and removing the directing group, the concept of meta-bromination of pyridines could be verified.
Collapse
Affiliation(s)
- Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Shanghui Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Hong Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Dongxu Shao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Yi Lu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
4
|
Efficient Synthesis of p-Hydroxyphenyl Ethanol from Hydrogenation of Methyl p-Hydroxyphenylacetate with CNTs-promoted Cu-Zr Catalyst. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Guo X, Wu Y, Li G, Xia JB. Redox-Triggered Ruthenium-Catalyzed Remote C–H Acylation with Primary Alcohols. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao Guo
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 21181, China
| | - Yang Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gongqiang Li
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 21181, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|