1
|
Gastalho CM, Sena AM, López Ó, Fernández-Bolaños JG, García-Sosa AT, Pereira F, Antunes CM, Costa AR, Burke AJ, Carreiro EP. Assessing the Potential of 1,2,3-Triazole-Dihydropyrimidinone Hybrids Against Cholinesterases: In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2024; 25:11153. [PMID: 39456935 PMCID: PMC11508620 DOI: 10.3390/ijms252011153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Combining the pharmacological properties of the 1,2,3-triazole and dihydropyrimidinone classes of compounds, two small families of mono- and di(1,2,3-triazole)-dihydropyrimidinone hybrids, A and B, were previously synthesized. The main objective of this work was to investigate the potential anti-Alzheimer effects of these hybrids. The inhibitory activities of cholinesterases (AChE and BuChE), antioxidant activity, and the inhibitory mechanism through in silico (molecular docking) and in solution (STD-NMR) experiments were evaluated. The 1,2,3-triazole-dihydropyrimidinone hybrids (A and B) showed moderate in vitro inhibitory activity on eqBuChE (IC50 values between 1 and 58.4 μM). The best inhibitor was the hybrid B4, featuring two 1,2,3-triazole cores, which exhibited stronger inhibition than galantamine, with an IC50 of 1 ± 0.1 μM for eqBuChE, through a mixed inhibition mechanism. Among the hybrids A, the most promising inhibitor was A1, exhibiting an IC50 of 12 ± 2 µM, similar to that of galantamine. Molecular docking and STD-NMR experiments revealed the key binding interactions of these promising inhibitors with BuChE. Hybrids A and B did not display Artemia salina toxicity below 100 μM.
Collapse
Affiliation(s)
- Carlos M. Gastalho
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana M. Sena
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | | | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Célia M. Antunes
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana R. Costa
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Departamento de Química, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Polo I, 1ºandar, 3004-504 Coimbra, Portugal
| | - Elisabete P. Carreiro
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
| |
Collapse
|
2
|
Soylu-Eter Ö, Özsoy N, Karalı N. Synthesis and molecular docking studies of 5-trifluoromethoxy-2-indolinones as cholinesterase dual inhibitors. Future Med Chem 2024; 16:623-645. [PMID: 38470247 DOI: 10.4155/fmc-2023-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: In Alzheimer's disease, butyrylcholinesterase (BuChE) activity gradually increases, while acetylcholinesterase (AChE) activity decreases or remains unchanged. Dual inhibitors have important roles in regulation of synaptic acetylcholine levels and progression of Alzheimer's disease. Methods: 1-(Thiomorpholin-4-ylmethyl)/benzyl-5-trifluoromethoxy-2-indolinones (6-7) were synthesized. AChE and BuChE inhibitory effects were investigated with Ellman's method. Molecular docking studies were performed for analyzing the possible binding interactions at active sites. Results: Compound 6g was the strongest inhibitor against both AChE (Ki = 0.35 μM) and BuChE (Ki = 0.53 μM). It showed higher inhibitory effects than both donepezil and galantamine. Moreover, compound 7m had a higher inhibitory effect than galantamine and the effect was comparable to that of donepezil against both AChE (Ki = 0.69 μM) and BuChE (Ki = 0.95 μM). Conclusion: The benzyl substitution compared with 1-(thiomorpholin-4-ylmethyl) group significantly increased both AChE and BuChE inhibitory effects.
Collapse
Affiliation(s)
- Özge Soylu-Eter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, Istanbul University, 34126, Istanbul, Turkey
| | - Nurten Özsoy
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Nilgün Karalı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| |
Collapse
|
3
|
Carreiro EP, Costa AR, Antunes CM, Ernesto S, Pinto F, Rodrigues B, Burke AJ. Quercetin-1,2,3-Triazole Hybrids as Multifunctional Anti-Alzheimer's Agents. Molecules 2023; 28:7495. [PMID: 38005217 PMCID: PMC10673615 DOI: 10.3390/molecules28227495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The number of patients with Alzheimer's disease (AD) continues to rise and, despite the efforts of researchers, there are still no effective treatments for this multifaceted disease. The main objective of this work was the search for multifunctional and more effective anti-Alzheimer agents. Herein, we report the evaluation of a library of quercetin-1,2,3-triazole hybrids (I-IV) in antioxidant, hydrogen peroxide-induced oxidative stress protection, and cholinesterases (AChE and BuChE) inhibitory activities. Hybrids IIf and IVa-d showed potent in vitro inhibitory activity on eqBuChE (IC50 values between 11.2 and 65.7 μM). Hybrid IIf, the best inhibitor, was stronger than galantamine, displaying an IC50 value of 11.2 μM for eqBuChE, and is also a competitive inhibitor. Moreover, toxicity evaluation for the most promising hybrids was performed using the Artemia salina toxicity assay, showing low toxicity. Hybrids IIf, IVb, and IVd did not affect viability at 12.5 μM and also displayed a protective effect against oxidative stress induced by hydrogen peroxide in cell damage in MCF-7 cells. Hybrids IIf, IVb, and IVd act as multifunctional ligands in AD pathologies.
Collapse
Affiliation(s)
- Elisabete P. Carreiro
- Institute for Research and Advanced Training (IIFA), LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Ana R. Costa
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Célia M. Antunes
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Sofia Ernesto
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Flávia Pinto
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Beatriz Rodrigues
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Anthony J. Burke
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
- Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Moutayakine A, Marques C, López Ó, Bagetta D, Leitzbach L, Hagenow S, Carreiro EP, Stark H, Alcaro S, Fernández-Bolaños JG, Burke AJ. Evaluation of chromane derivatives: Promising privileged scaffolds for lead discovery within Alzheimer's disease. Bioorg Med Chem 2022; 68:116807. [PMID: 35653868 DOI: 10.1016/j.bmc.2022.116807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
The chromane ring system is widely distributed in nature and has proven to be a highly potent pharmacophore in medicinal chemistry, which includes the area of Alzheimer's and Parkinson's diseases. We report on the development of a gem-dimethylchroman-4-ol family that was shown to give good inhibition of equine serum butyrylcholinesterase (eqBuChE) (in the range 2.9 - 7.3 μM) and in the same range of currently used drugs. We also synthesized a small library of gem-dimethylchroman-4-amine compounds, via a simple reductive amination of the corresponding chromanone precursor, that were also selective for eqBuChE presenting inhibitions in the range 7.6 - 67 μM. Kinetic studies revealed that they were mixed inhibitors. Insights into their mechanism of action were obtained through molecular docking and STD-NMR experiments, and the most active examples showed excellent drug-likeness and pharmacological properties predicted using Swiss-ADME. We also prepared a set of propargyl gem-dimethylchromanamines, for monoamine oxidase (MAO) inhibition but they were only moderately active (the best being 28% inhibition at 1 µM on MAO-B). Overall, our compounds were found to be best suited as inhibitors for BuChE.
Collapse
Affiliation(s)
- Amina Moutayakine
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal; BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Islas Canarias, Spain
| | - Carolina Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science academic spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Luisa Leitzbach
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry. Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry. Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry. Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science academic spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000 Évora, Portugal; Chemistry Department, School of Science and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute for Molecular Sciences, Faculty of Science and Technology, University of Coimbra, Portugal.
| |
Collapse
|
5
|
The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur J Med Chem 2020; 211:113102. [PMID: 33421712 DOI: 10.1016/j.ejmech.2020.113102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Oxindole derivatives are known for their great interest in the field of Medicinal Chemistry, as they display vast biological activities. Recent efforts concerning the preparation of oxindole derivatives using isatin-based multicomponent reactions (MCRs) constitute a great advance in generating druglike libraries fast and with wide scaffold diversity. In this review, we address those recent developments, exploring the synthetic pathways and biological activities described for these compounds, namely antitumor, antibacterial, antifungal, antiparasitic, antiviral, antioxidant, anti-inflammatory and central nervous system (CNS) pathologies. To add new depth to this work, we used a well-established web-based free tool (SwissADME) to evaluate the most promising scaffolds in what concerns their druglike properties, namely by evaluating their compliance with some of the most valuable rules applied by medicinal chemists in both academia and industrial settings (Lipinski, Ghose, Veber, Egan, Muegge). The aim of this review is to endorse isatin-based MCRs as a valuable synthetic approach to attain new hit compounds bearing the oxindole privileged structure, while critically exploring these scaffolds' druglike properties.
Collapse
|
6
|
Lee J, Park J, Kim J, Jeong B, Choi SY, Jang HS, Yang H. Targeted Isolation of Cytotoxic Sesquiterpene Lactones from Eupatorium fortunei by the NMR Annotation Tool, SMART 2.0. ACS OMEGA 2020; 5:23989-23995. [PMID: 32984720 PMCID: PMC7513349 DOI: 10.1021/acsomega.0c03270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 05/12/2023]
Abstract
Small Molecular Accurate Recognition Technology (SMART 2.0) has recently been introduced as a NMR-based machine learning tool for the discovery and characterization of natural products. We attempted targeted isolation of sesquiterpene lactones from Eupatorium fortunei with the aid of structural annotation by SMART 2.0 and chemical profiling. Eight germacrene-type (1-7 and 10) and two eudesmane-type sesquiterpene lactones (8 and 9) were isolated from the whole plant of Eupatorium fortunei. With the guidance of the results of the subfractions from E. fortunei obtained by SMART 2.0, their cytotoxic activities were evaluated against five cancer cells (SKOV3, A549, PC3, HEp-2, and MCF-7). Compounds 4 and 8 exhibited IC50 values of 3.9 ± 1.2 and 3.9 ± 0.6 μM against prostate cancer cells, PC3, respectively. Compound 7 showed good cytotoxicity with IC50 values of 5.8 ± 0.1 μM against breast cancer cells, MCF-7. In the present study, the rapid annotation of the mixture of compounds in a fraction by the NMR-based machine learning tool helped the targeted isolation of bioactive compounds from natural products.
Collapse
|
7
|
Design and synthesis of novel isatin derivatives as potent analgesic, anti-inflammatory and antimicrobial agents. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01795-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
N-1,2,3-triazole-isatin derivatives for cholinesterase and β-amyloid aggregation inhibition: A comprehensive bioassay study. Bioorg Chem 2020; 98:103753. [DOI: 10.1016/j.bioorg.2020.103753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
|
9
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|