1
|
Donarska B, Cytarska J, Kołodziej-Sobczak D, Studzińska R, Kupczyk D, Baranowska-Łączkowska A, Jaroch K, Szeliska P, Bojko B, Różycka D, Olejniczak AB, Płaziński W, Łączkowski KZ. Synthesis of Carborane-Thiazole Conjugates as Tyrosinase and 11β-Hydroxysteroid Dehydrogenase Inhibitors: Antiproliferative Activity and Molecular Docking Studies. Molecules 2024; 29:4716. [PMID: 39407644 PMCID: PMC11477717 DOI: 10.3390/molecules29194716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The presented study depicts the synthesis of 11 carborane-thiazole conjugates with anticancer activity, as well as an evaluation of their biological activity as inhibitors of two enzymes: tyrosinase and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The overexpression of tyrosinase results in the intracellular accumulation of melanin and can be observed in melanoma. The overexpression of 11β-HSD1 results in an elevation of glucocorticoid levels and has been associated with the aggravation of metabolic disorders such as type II diabetes mellitus and obesity. Recently, as the comorbidity of melanomas and metabolic disorders is being recognized as an important issue, the search for new therapeutic options has intensified. This study demonstrates that carborane-thiazole derivatives inhibit both enzymes, exerting beneficial effects. The antiproliferative action of all newly synthesized compounds was evaluated using three cancer cell lines, namely A172 (human brain glioblastoma), B16F10 (murine melanoma) and MDA-MB-231 (human breast adenocarcinoma), as well as a healthy control cell line of HUVEC (human umbilical vein endothelial cells). The results show that 9 out of 11 newly synthesized compounds demonstrated similar antiproliferative action against the B16F10 cell line to the reference drug, and three of these compounds surpassed it. To the best of our knowledge, this study is the first to demonstrate dual inhibitory action of carborane-thiazole derivatives against both tyrosinase and 11β-HSD1. Therefore, it represents the first step towards the simultaneous treatment of melanoma and comorbid diseases such as type II diabetes mellitus.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland;
| | | | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Paulina Szeliska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Daria Różycka
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (D.R.); (A.B.O.)
| | - Agnieszka B. Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (D.R.); (A.B.O.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| |
Collapse
|
2
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
3
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
4
|
Bai JF, Majjigapu SR, Sordat B, Poty S, Vogel P, Elías-Rodríguez P, Moreno-Vargas AJ, Carmona AT, Caffa I, Ghanem M, Khalifa A, Monacelli F, Cea M, Robina I, Gajate C, Mollinedo F, Bellotti A, Nahimana A, Duchosal M, Nencioni A. Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. Eur J Med Chem 2022; 239:114504. [PMID: 35724566 DOI: 10.1016/j.ejmech.2022.114504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC50 of 0.16 nM, 0.004 nM and 0.08 nM toward PDAC cells, respectively.
Collapse
Affiliation(s)
- Jian-Fei Bai
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Bernard Sordat
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Sophie Poty
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pilar Elías-Rodríguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Moustafa Ghanem
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Axel Bellotti
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel Duchosal
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland; Service of Hematology, Oncology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
5
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
6
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Comprehensive exploration of chemical space using trisubstituted carboranes. Sci Rep 2021; 11:24101. [PMID: 34916538 PMCID: PMC8677773 DOI: 10.1038/s41598-021-03459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 42 trisubstituted carboranes categorised into five scaffolds were systematically designed and synthesized by exploiting the different reactivities of the twelve vertices of o-, m-, and p-carboranes to cover all directions in chemical space. Significant inhibitors of hypoxia inducible factor transcriptional activitay were mainly observed among scaffold V compounds (e.g., Vi–m, and Vo), whereas anti-rabies virus activity was observed among scaffold V (Va–h), scaffold II (IIb–g), and scaffold IV (IVb) compounds. The pharmacophore model predicted from compounds with scaffold V, which exhibited significant anti-rabies virus activity, agreed well with compounds IIb–g with scaffold II and compound IVb with scaffold IV. Normalized principal moment of inertia analysis indicated that carboranes with scaffolds I–V cover all regions in the chemical space. Furthermore, the first compounds shown to stimulate the proliferation of the rabies virus were found among scaffold V carboranes.
Collapse
|
8
|
Asawa Y, Nishida K, Kawai K, Domae K, Ban HS, Kitazaki A, Asami H, Kohno JY, Okada S, Tokuma H, Sakano D, Kume S, Tanaka M, Nakamura H. Carborane as an Alternative Efficient Hydrophobic Tag for Protein Degradation. Bioconjug Chem 2021; 32:2377-2385. [PMID: 34699716 DOI: 10.1021/acs.bioconjchem.1c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carboranes 1 and 2 were designed and synthesized for hydrophobic tag (HyT)-induced degradation of HaloTag fusion proteins. The levels of the hemagglutinin (HA)-HaloTag2-green fluorescent protein (EGFP) stably expressed in Flp-In 293 cells were significantly reduced by HyT13, HyT55, and carboranes 1 and 2, with expression levels of 49, 79, 43, and 65%, respectively, indicating that carborane is an alternative novel hydrophobic tag (HyT) for protein degradation under an intracellular environment. To clarify the mechanism of HyT-induced proteolysis, bovine serum albumin (BSA) was chosen as an extracellular protein and modified with maleimide-conjugated m-carborane (MIC). The measurement of the ζ-potentials and the lysine residue modification with fluorescein isothiocyanate (FITC) of BSA-MIC conjugates suggested that the conjugation of carborane induced the exposure of lysine residues on BSA, resulting in the degradation via ubiquitin E3 ligase-related proteasome pathways in the cell.
Collapse
Affiliation(s)
- Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kiyotaka Domae
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Akihiro Kitazaki
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Hiroya Asami
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
9
|
Murphy N, McCarthy E, Dwyer R, Farràs P. Boron clusters as breast cancer therapeutics. J Inorg Biochem 2021; 218:111412. [PMID: 33773323 DOI: 10.1016/j.jinorgbio.2021.111412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Since the foundation of small molecule-based therapeutics over 100 years ago, their design has been dominated by organic based components. This has also been apparent in anti-cancer therapeutics in a broad range of strategies; from the older DNA chelating drugs, to the more recent molecular-targeted therapies. The main challenges facing current treatments; multidrug resistance and low therapeutic index, can potentially be alleviated by the incorporation of boron clusters. While retaining the versatility of their organic counterparts, these compounds offer a unique set of molecular interactions, which are a useful tool in targeted therapies and can improve many organic formulations with their incorporation. This review will discuss the potential of boron clusters in medicine while focusing on their activity in the breast cancer setting.
Collapse
Affiliation(s)
- Neville Murphy
- School of Chemistry, Ryan Institute, National University of Ireland, Galway H91CF50, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland
| | - Elan McCarthy
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - Róisín Dwyer
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland
| | - Pau Farràs
- School of Chemistry, Ryan Institute, National University of Ireland, Galway H91CF50, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland.
| |
Collapse
|
10
|
|
11
|
Tanuma SI, Katsuragi K, Oyama T, Yoshimori A, Shibasaki Y, Asawa Y, Yamazaki H, Makino K, Okazawa M, Ogino Y, Sakamoto Y, Nomura M, Sato A, Abe H, Nakamura H, Takahashi H, Tanuma N, Uchiumi F. Structural Basis of Beneficial Design for Effective Nicotinamide Phosphoribosyltransferase Inhibitors. Molecules 2020; 25:molecules25163633. [PMID: 32785052 PMCID: PMC7464552 DOI: 10.3390/molecules25163633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic strategy for targeting cancer metabolism. So far, many potent NAMPT inhibitors have been developed and shown to bind to two unique tunnel-shaped cavities existing adjacent to each active site of a NAMPT homodimer. However, cytotoxicities and resistances to NAMPT inhibitors have become apparent. Therefore, there remains an urgent need to develop effective and safe NAMPT inhibitors. Thus, we designed and synthesized two close structural analogues of NAMPT inhibitors, azaindole-piperidine (3a)- and azaindole-piperazine (3b)-motif compounds, which were modified from the well-known NAMPT inhibitor FK866 (1). Notably, 3a displayed considerably stronger enzyme inhibitory activity and cellular potency than did 3b and 1. The main reason for this phenomenon was revealed to be due to apparent electronic repulsion between the replaced nitrogen atom (N1) of piperazine in 3b and the Nδ atom of His191 in NAMPT by our in silico binding mode analyses. Indeed, 3b had a lower binding affinity score than did 3a and 1, although these inhibitors took similar stable chair conformations in the tunnel region. Taken together, these observations indicate that the electrostatic enthalpy potential rather than entropy effects inside the tunnel cavity has a significant impact on the different binding affinity of 3a from that of 3b in the disparate enzymatic and cellular potencies. Thus, it is better to avoid or minimize interactions with His191 in designing further effective NAMPT inhibitors.
Collapse
Affiliation(s)
- Sei-ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Correspondence:
| | - Kiyotaka Katsuragi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., Fujisawa, Kanagawa 251-0012, Japan;
| | - Yuri Shibasaki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hiroaki Yamazaki
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Kosho Makino
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoko Ogino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| |
Collapse
|
12
|
Hsu MH, Hsieh CY, Kapoor M, Chang JH, Chu HL, Cheng TM, Hsu KC, Lin TE, Tsai FY, Horng JC. Leucettamine B analogs and their carborane derivative as potential anti-cancer agents: Design, synthesis, and biological evaluation. Bioorg Chem 2020; 98:103729. [DOI: 10.1016/j.bioorg.2020.103729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
|