1
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Leone L, D’Alonzo D, Maglio O, Pavone V, Nastri F, Lombardi A. Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
- Institute of Biostructures and Bioimages—National Research Council, Via Mezzocannone 16, Napoli 80134, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| |
Collapse
|
4
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
5
|
Abstract
Introduction: Aurora kinases are a family of serine/threonine kinases, and promote mitotic spindle assembly by regulating centrosome duplication and separation. Aurora kinases are overexpressed in a variety of tumor cell lines, thus, the use of Aurora kinase small-molecule inhibitors has become a potential treatment option for cancer.Areas covered: As a continuing review of Aurora kinase inhibitors and their patents published in 2009, 2011 and 2014. Herein, we updated the information for Aurora kinase inhibitors in clinical trials and the patents filed from 2014 to 2020. PubMed, Scopus, SciFinder, and www.clinicaltrials.gov databases were used for searching the clinical information and patents of Aurora kinase inhibitors.Expert opinion: Even though Aurora A or B selective as well as pan inhibitors show preclinical and clinical efficacy, so far, no Aurora kinase inhibitor has been approved for clinical use. Preliminary evidence suggested that highly selective Aurora kinase or multi-target inhibitors as a single agent as well as in combination therapy are still the current main development trend of Aurora kinase inhibitors.
Collapse
Affiliation(s)
- Xue-Li Jing
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shi-Wu Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Synthesis and biological evaluation of 2,4,6-trinitroaniline derivatives as potent antitumor agents. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Sun B, Wang J, Liu L, Mao L, Peng L, Wang Y. Synthesis and activity of novel indirubin derivatives. Chem Biol Drug Des 2020; 97:565-571. [PMID: 32914538 DOI: 10.1111/cbdd.13792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Bin Sun
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan China
| | - Jiahao Wang
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Luohua Liu
- State Key Laboratory of Applied Organic Chemistry Department of Chemistry Lanzhou University Lanzhou China
| | - Longfei Mao
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Lizeng Peng
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Yuwei Wang
- College of Pharmacy Shaanxi University of Chinese Medicine Xi'an/Xianyang China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| |
Collapse
|
8
|
Chemical characterization and biological activity data for a novel indirubin derivative, LDD-1819. Data Brief 2019; 25:104373. [PMID: 31489353 PMCID: PMC6717215 DOI: 10.1016/j.dib.2019.104373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022] Open
Abstract
This article contains chemical characterization and biological activity data for a novel indirubin derivative, termed LDD-1819. The detailed synthesis procedure and associated NMR data are presented. The concentration-dependent inhibition data of two biological targets, glycogen synthase kinase-3β and aurora kinase A are described. The following biological data are also contained in this article: 1) the cellularization of skeletal muscle myotubes by LDD-1819 or two small molecule inhibitors of glycogen synthase kinase-3β and aurora kinase A (BIO and reversine) and gene expression data for the myoblast markers Pax-7 and Myf5, 2) Cell viability of hTERT human immortalized fibroblasts, colon cancer cells and breast cancer cells, and 3) Western blotting analysis of full length and cleaved caspse-7, and cleaved poly (ADP-ribose) polymerase (PARP) in hTERT fibroblasts treated with LDD-1819. A schematic diagram of the biological activities of LDD-1819 is also presented. Further interpretation and discussion of these data are provided in the associated research article ‘A novel indirubin derivative that increases somatic cell plasticity and inhibits tumorigenicity’ (Kim et al., 2019).
Collapse
|