1
|
Kairytė K, Vaickelionienė R, Grybaitė B, Anusevičius K, Mickevičius V, Petrikaitė V. The Effect of 4-(Dimethylamino)phenyl-5-oxopyrrolidines on Breast and Pancreatic Cancer Cell Colony Formation, Migration, and Growth of Tumor Spheroids. Int J Mol Sci 2024; 25:1834. [PMID: 38339112 PMCID: PMC10855844 DOI: 10.3390/ijms25031834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
A series of hydrazones, azoles, and azines bearing a 4-dimethylaminophenyl-5-oxopyrrolidine scaffold was synthesized. Their cytotoxic effect against human pancreatic carcinoma Panc-1 and triple-negative breast cancer MDA-MB-231 cell lines was established by MTT assay. Pyrrolidinone derivatives 3c and 3d, with incorporated 5-chloro and 5-methylbenzimidazole fragments; hydrazone 5k bearing a 5-nitrothien-2-yl substitution; and hydrazone 5l with a naphth-1-yl fragment in the structure significantly decreased the viability of both cancer cell lines. Compounds 3c and 5k showed the highest selectivity, especially against the MDA-MB-231 cancer cell line. The EC50 values of the most active compound 5k against the MDA-MB231 cell line was 7.3 ± 0.4 μM, which were slightly higher against the Panc-1 cell line (10.2 ± 2.6 μM). Four selected pyrrolidone derivatives showed relatively high activity in a clonogenic assay. Compound 5k was the most active in both cell cultures, and it completely disturbed MDA-MB-231 cell colony growth at 1 and 2 μM and showed a strong effect on Panc-1 cell colony formation, especially at 2 μM. The compounds did not show an inhibitory effect on cell line migration by the 'wound-healing' assay. Compound 3d most efficiently inhibited the growth of Panc-1 spheroids and reduced cell viability in MDA-MB-231 spheroids. Considering these different activities in biological assays, the selected pyrrolidinone derivatives could be further tested to better understand the structure-activity relationship and their mechanism of action.
Collapse
Affiliation(s)
- Karolina Kairytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Vilma Petrikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania
- Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Pr. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
2
|
Zhu J, Chen S, Liu Z, Guo J, Cao S, Long S. Recent advances in anticancer peptoids. Bioorg Chem 2023; 139:106686. [PMID: 37399616 DOI: 10.1016/j.bioorg.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Since most tumors become resistant to drugs in a gradual and irreversible manner, making treatment less effective over time, anticancer drugs require continuous development. Peptoids are a class of peptidomimetics that can be easily synthesized and optimized. They exhibit a number of unique characteristics, including protease resistance, non-immunogenicity, do not interfere with peptide functionality and skeleton polarity, and can adopt different conformations. They have been studied for their efficacy in different cancer therapies, and can be considered as a promising alternative molecular category for the development of anticancer drugs. Herein, we discuss the extensive recent advances in peptoids and peptoid hybrids in the treatment of cancers such as prostate, breast, lung, and other ones, in the hope of providing a reference for the further development of peptoid anticancer drugs.
Collapse
Affiliation(s)
- Jidan Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
3
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Tang C, Wang X, Jin Y, Wang F. Recent advances in HDAC-targeted imaging probes for cancer detection. Biochim Biophys Acta Rev Cancer 2022; 1877:188788. [PMID: 36049581 DOI: 10.1016/j.bbcan.2022.188788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
5
|
Biophysical and pharmacokinetic characterization of a small-molecule inhibitor of RUNX1/ETO tetramerization with anti-leukemic effects. Sci Rep 2022; 12:14158. [PMID: 35986043 PMCID: PMC9391460 DOI: 10.1038/s41598-022-17913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity. Previously, we identified the first-in-class small-molecule inhibitor of NHR2 tetramer formation, 7.44, which was shown to specifically interfere with NHR2, restore gene expression down-regulated by RUNX1/ETO, inhibit the proliferation of RUNX1/ETO-depending SKNO-1 cells, and reduce the RUNX1/ETO-related tumor growth in a mouse model. However, no biophysical and structural characterization of 7.44 binding to the NHR2 domain has been reported. Likewise, the compound has not been characterized as to physicochemical, pharmacokinetic, and toxicological properties. Here, we characterize the interaction between the NHR2 domain of RUNX1/ETO and 7.44 by biophysical assays and show that 7.44 interferes with NHR2 tetramer stability and leads to an increase in the dimer population of NHR2. The affinity of 7.44 with respect to binding to NHR2 is Klig = 3.75 ± 1.22 µM. By NMR spectroscopy combined with molecular dynamics simulations, we show that 7.44 binds with both heteroaromatic moieties to NHR2 and interacts with or leads to conformational changes in the N-termini of the NHR2 tetramer. Finally, we demonstrate that 7.44 has favorable physicochemical, pharmacokinetic, and toxicological properties. Together with biochemical, cellular, and in vivo assessments, the results reveal 7.44 as a lead for further optimization towards targeted therapy of t(8;21) AML.
Collapse
|
6
|
Jakubkiene V, Valiulis GE, Schweipert M, Zubriene A, Matulis D, Meyer-Almes FJ, Tumkevicius S. Synthesis and HDAC inhibitory activity of pyrimidine-based hydroxamic acids. Beilstein J Org Chem 2022; 18:837-844. [PMID: 35923158 PMCID: PMC9296983 DOI: 10.3762/bjoc.18.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylases (HDACs) play an essential role in the transcriptional regulation of cells through the deacetylation of nuclear histone and non-histone proteins and are promising therapeutic targets for the treatment of various diseases. Here, the synthesis of new compounds in which a hydroxamic acid residue is attached to differently substituted pyrimidine rings via a methylene group bridge of varying length as potential HDAC inhibitors is described. The target compounds were obtained by alkylation of 2-(alkylthio)pyrimidin-4(3H)-ones with ethyl 2-bromoethanoate, ethyl 4-bromobutanoate, or methyl 6-bromohexanoate followed by aminolysis of the obtained esters with hydroxylamine. Oxidation of the 2-methylthio group to the methylsulfonyl group and following treatment with amines resulted in the formation of the corresponding 2-amino-substituted derivatives, the ester group of which reacted with hydroxylamine to give the corresponding hydroxamic acids. The synthesized hydroxamic acids were tested as inhibitors of the HDAC4 and HDAC8 isoforms. Among the synthesized pyrimidine-based hydroxamic acids N-hydroxy-6-[6-methyl-2-(methylthio)-5-propylpyrimidin-4-yloxy]hexanamide was found to be the most potent inhibitor of both the HDAC4 and HDAC8 isoforms, with an IC50 of 16.6 µM and 1.2 µM, respectively.
Collapse
Affiliation(s)
- Virginija Jakubkiene
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Gabrielius Ernis Valiulis
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Stephanstr. 7, 64295 Darmstadt, Germany
| | - Asta Zubriene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257 Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257 Vilnius, Lithuania
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Stephanstr. 7, 64295 Darmstadt, Germany
| | - Sigitas Tumkevicius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
7
|
Schäker‐Hübner L, Haschemi R, Büch T, Kraft FB, Brumme B, Schöler A, Jenke R, Meiler J, Aigner A, Bendas G, Hansen FK. Balancing Histone Deacetylase (HDAC) Inhibition and Drug-likeness: Biological and Physicochemical Evaluation of Class I Selective HDAC Inhibitors. ChemMedChem 2022; 17:e202100755. [PMID: 35073610 PMCID: PMC9303312 DOI: 10.1002/cmdc.202100755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the "foot-pocket" in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4 ) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising "capless" HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10 c (LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines.
Collapse
Affiliation(s)
- Linda Schäker‐Hübner
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Reza Haschemi
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Thomas Büch
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Fabian B. Kraft
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Birke Brumme
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Andrea Schöler
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Robert Jenke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
- University Cancer Center Leipzig (UCCL)Universitätsklinikum LeipzigLiebigstraße 22, Haus 704103LeipzigGermany
| | - Jens Meiler
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Achim Aigner
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Gerd Bendas
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Finn K. Hansen
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
8
|
Daśko M, de Pascual-Teresa B, Ortín I, Ramos A. HDAC Inhibitors: Innovative Strategies for Their Design and Applications. Molecules 2022; 27:molecules27030715. [PMID: 35163980 PMCID: PMC8837987 DOI: 10.3390/molecules27030715] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are a large family of epigenetic metalloenzymes that are involved in gene transcription and regulation, cell proliferation, differentiation, migration, and death, as well as angiogenesis. Particularly, disorders of the HDACs expression are linked to the development of many types of cancer and neurodegenerative diseases, making them interesting molecular targets for the design of new efficient drugs and imaging agents that facilitate an early diagnosis of these diseases. Thus, their selective inhibition or degradation are the basis for new therapies. This is supported by the fact that many HDAC inhibitors (HDACis) are currently under clinical research for cancer therapy, and the Food and Drug Administration (FDA) has already approved some of them. In this review, we will focus on the recent advances and latest discoveries of innovative strategies in the development and applications of compounds that demonstrate inhibitory or degradation activity against HDACs, such as PROteolysis-TArgeting Chimeras (PROTACs), tumor-targeted HDACis (e.g., folate conjugates and nanoparticles), and imaging probes (positron emission tomography (PET) and fluorescent ligands).
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| |
Collapse
|
9
|
Recent Updates of Natural and Synthetic URAT1 Inhibitors and Novel Screening Methods. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5738900. [PMID: 34754317 PMCID: PMC8572588 DOI: 10.1155/2021/5738900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Human urate anion transporter 1 (hURAT1) is responsible for the reabsorption of uric acid in the proximal renal tubules and is a promising therapeutic target for treating hyperuricemia. To mitigate the side effects of URAT1-targeted clinical agents such as benzbromarone, there is significant interest in discovering new URAT1 inhibitors and developing technology that can evaluate URAT1 inhibition. This review summarizes the methods for assay of URAT1 inhibition and the progress on the discovery of natural and synthetic URAT1 inhibitors in the past five years.
Collapse
|
10
|
Schäker-Hübner L, Warstat R, Ahlert H, Mishra P, Kraft FB, Schliehe-Diecks J, Schöler A, Borkhardt A, Breit B, Bhatia S, Hügle M, Günther S, Hansen FK. 4-Acyl Pyrrole Capped HDAC Inhibitors: A New Scaffold for Hybrid Inhibitors of BET Proteins and Histone Deacetylases as Antileukemia Drug Leads. J Med Chem 2021; 64:14620-14646. [PMID: 34582215 DOI: 10.1021/acs.jmedchem.1c01119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multitarget drugs are an emerging alternative to combination therapies. In three iterative cycles of design, synthesis, and biological evaluation, we developed a novel type of potent hybrid inhibitors of bromodomain, and extra-terminal (BET) proteins and histone deacetylases (HDACs) based on the BET inhibitor XD14 and well-established HDAC inhibitors. The most promising new hybrids, 49 and 61, displayed submicromolar inhibitory activity against HDAC1-3 and 6, and BRD4(1), and possess potent antileukemia activity. 49 induced apoptosis more effectively than the combination of ricolinostat and birabresib (1:1). The most balanced dual inhibitor, 61, induced significantly more apoptosis than the related control compounds 62 (no BRD4(1) affinity) and 63 (no HDAC inhibition) as well as the 1:1 combination of both. Additionally, 61 was well tolerated in an in vivo zebrafish toxicity model. Overall, our data suggest an advantage of dual HDAC/BET inhibitors over the combination of two single targeted compounds.
Collapse
Affiliation(s)
- Linda Schäker-Hübner
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Robin Warstat
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Heinz Ahlert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Pankaj Mishra
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Fabian B Kraft
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany.,Abteilung für Pharmazeutische und Zellbiologische Chemie, Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Andrea Schöler
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Martin Hügle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Finn K Hansen
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany.,Abteilung für Pharmazeutische und Zellbiologische Chemie, Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
11
|
Padilla-Coley S, Rudebeck EE, Smith BD, Pfeffer FM. Intracellular fluorescence competition assay for inhibitor engagement of histone deacetylase. Bioorg Med Chem Lett 2021; 47:128207. [PMID: 34146703 DOI: 10.1016/j.bmcl.2021.128207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
An intracellular fluorescence competition assay was developed to assess the capability of inhibitor candidates to engage histone deacetylase (HDAC) inside living cells and thus diminish cell uptake and staining by the HDAC-targeted fluorescent probe APS. Fluorescence cell microscopy and flow cytometry showed that pre-incubation of living cells with candidate inhibitors led to diminished cell uptake of the fluorescent probe. The assay was effective because the fluorescent probe (APS) possessed the required performance properties, including bright fluorescence, ready membrane diffusion, selective intracellular HDAC affinity, and negligible acute cytotoxicity. The concept of an intracellular fluorescence competition assay is generalizable and has broad applicability since it obviates the requirement to use the isolated biomacromolecule target for screening of molecular candidates with target affinity.
Collapse
Affiliation(s)
- Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Elley E Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
12
|
Development of a fluorescence-based assay for screening of urate transporter 1 inhibitors using 6-carboxyfluorescein. Anal Biochem 2021; 626:114246. [PMID: 33965427 DOI: 10.1016/j.ab.2021.114246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022]
Abstract
The urate transporter 1 (URAT1) inhibitors were considered a very promising class of uricosuric agents for the treatment of hyperuricemia and gout. In vitro activity testing of these compounds has been conducted by radio-labeling uric acid for a long time. However, relatively few offer the convenience and speed of fluorescence-based assays. Herein, we report the development of a non-radioactive cell-based method for the screening of URAT1 inhibitors using the human embryonic kidney 293T cells stably expressing human URAT1, and 6-carboxyfluorescein (6-CFL) as a substrate. The URAT1-mediated transport of 6-CFL was time dependent and saturable (Km = 239.5 μM, Vmax = 6.2 pmol/well/min, respectively). Molecules known to interact with organic anion transporters, including benzbromarone, probenecid, and lesinurad, demonstrated concentration-dependent inhibition of 6-CFL transport by URAT1. Moreover, we screened a small subset of compounds, and identified compound 4 as a promising URAT1 inhibitor. This in vitro assay may be employed to screen for novel URAT1 inhibitors, which are effective against hyperuricemia.
Collapse
|
13
|
Zhang K, Liu Z, Yao Y, Qiu Y, Li F, Chen D, Hamilton DJ, Li Z, Jiang S. Structure-Based Design of a Selective Class I Histone Deacetylase (HDAC) Near-Infrared (NIR) Probe for Epigenetic Regulation Detection in Triple-Negative Breast Cancer (TNBC). J Med Chem 2021; 64:4020-4033. [PMID: 33745280 DOI: 10.1021/acs.jmedchem.0c02161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abnormally high levels of class I histone deacetylases (HDACs) are associated with triple-negative breast cancer (TNBC) proliferation, malignant transformation, and poor prognosis of patients. Herein, we report a near-infrared imaging probe for TNBC detection via visualizing class I HDACs. Conjugating Cy5.5 to a cyclic depsipeptide inhibitor, we obtained the probe (20-Cy5.5) that retained desirable class I HDAC affinity and selectivity. Then, this probe could visualize epigenetic changes by class I HDACs in TNBC MDA-MB-231 cells and in xenograft tumor models in real time. Treatment with suberoylanilide hydroxamic acid (SAHA) significantly reduced the uptake of the probe in tumors, suggesting its potential use in evaluation of therapeutic responses of HDACi-mediated therapy. Moreover, 20-Cy5.5 could detect class I HDAC expression in TNBC lung metastasis. This novel NIR probe that achieves tumor class I HDAC imaging not only leads to a better understanding of epigenetic regulation in tumors but also has great potential for improving the TNBC diagnosis and treatment.
Collapse
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyi Liu
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Yiwu Yao
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yatao Qiu
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Dong Chen
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Fuller AA, Moreno JL, Nguyen MT. Using Fluorescence to Enable Innovative Functions of Foldamers. Isr J Chem 2021. [DOI: 10.1002/ijch.202000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amelia A. Fuller
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| | - Jose L. Moreno
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| | - Michelle T. Nguyen
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| |
Collapse
|
15
|
Reßing N, Sönnichsen M, Osko JD, Schöler A, Schliehe-Diecks J, Skerhut A, Borkhardt A, Hauer J, Kassack MU, Christianson DW, Bhatia S, Hansen FK. Multicomponent Synthesis, Binding Mode, and Structure-Activity Relationship of Selective Histone Deacetylase 6 (HDAC6) Inhibitors with Bifurcated Capping Groups. J Med Chem 2020; 63:10339-10351. [PMID: 32803970 DOI: 10.1021/acs.jmedchem.9b01888] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) is an emerging target for the treatment of cancer, neurodegenerative diseases, inflammation, and other diseases. Here, we present the multicomponent synthesis and structure-activity relationship of a series of tetrazole-based HDAC6 inhibitors. We discovered the hit compound NR-160 by investigating the inhibition of recombinant HDAC enzymes and protein acetylation. A cocrystal structure of HDAC6 complexed with NR-160 disclosed that the steric complementarity of the bifurcated capping group of NR-160 to the L1 and L2 loop pockets may be responsible for its HDAC6-selective inhibition. While NR-160 displayed only low cytotoxicity as a single agent against leukemia cell lines, it augmented the apoptosis induction of the proteasome inhibitor bortezomib in combination experiments significantly. Furthermore, a combinatorial high-throughput drug screen revealed significantly enhanced cytotoxicity when NR-160 was used in combination with epirubicin and daunorubicin. The synergistic effect in combination with bortezomib and anthracyclines highlights the potential of NR-160 in combination therapies.
Collapse
Affiliation(s)
- Nina Reßing
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.,Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jeremy D Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Alexander Skerhut
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Julia Hauer
- Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.,Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
16
|
The design of a novel near-infrared fluorescent HDAC inhibitor and image of tumor cells. Bioorg Med Chem 2020; 28:115639. [PMID: 32773090 DOI: 10.1016/j.bmc.2020.115639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/21/2022]
Abstract
Histone deacetylases (HDACs) have been found to be biomarkers of cancers and the corresponding inhibitors have attracted much attention these years. Herein we reported a near-infrared fluorescent HDAC inhibitor based on vorinostat (SAHA) and a NIR fluorophore. This newly designed inhibitor showed similar inhibitory activity to SAHA against three HDAC isoforms (HDAC1, 3, 6). The western blot assay showed significant difference in compared with the negative group. When used as probe for further kinematic imaging, Probe 1 showed enhanced retention in tumor cells and the potential of HDAC inhibitors in drug delivery was firstly brought out. The cytotoxicity assay showed Probe 1 had some anti-proliferation activities with corresponding IC50 values of 9.20 ± 0.96 μM on Hela cells and 5.91 ± 0.57 μM on MDA-MB-231 cells. These results indicated that Probe 1 could be used as a potential NIR fluorescent in the study of HDAC inhibitors and lead compound for the development of visible drugs.
Collapse
|