1
|
Samarth N, Gulhane P, Singh S. Investigation through naphtho[2,3-a]pyrene on mutated EGFR mediated autophagy in NSCLC: Cellular model system unleashing therapeutic potential. IUBMB Life 2024. [PMID: 39275879 DOI: 10.1002/iub.2914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 09/16/2024]
Abstract
Mutant epidermal growth factor receptor (EGFR) signaling has emerged as a key cause of carcinogenesis and therapy resistance in non-small cell lung cancer (NSCLC), which continues to pose a serious threat to world health. In this study, we aimed to elucidate the complex molecular pathways of EGFR-mediated autophagy signaling in NSCLC. We identified naphtho[2,3-a]pyrene, an anthraquinolone derivative, to be a promising investigational drug that targets EGFR-mediated autophagy using a cellular model system. By utilizing systems biology, we developed a computational model that explained the signaling of EGFR-mediated autophagy and identified critical crosstalk sites that could be inhibited therapeutically. As a lead compound, naphtho[2,3-a]pyrene was confirmed by molecular docking experiments. It was found to be cytotoxic to NSCLC cells, impact migration, induce apoptosis, and arrest cell cycle, both on its own and when combined with standard drugs. The anticancer efficacy of naphtho[2,3-a]pyrene was validated in vivo on CDX nude mice. It showed synergistic activity against NSCLC when coupled with gefitinib, chloroquine, and radiation. Altogether, our study highlights naphtho[2,3-a]pyrene's therapeutic promise in NSCLC by focusing on EGFR-mediated autophagy and providing a new strategy to fight drug resistance and tumor survival.
Collapse
Affiliation(s)
- Nikhil Samarth
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| | - Pooja Gulhane
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| |
Collapse
|
2
|
Shen L, Zhang M, Qiu Y, Yang L, Lu Y, Li H, Zhang L, Tang F, Wang F, Zhu C, Bao H, Ding Y. DNA barcoding combined with high-resolution melting analysis to discriminate rhubarb species and its traditional Chinese patent medicines. Front Pharmacol 2024; 15:1371890. [PMID: 38948467 PMCID: PMC11211599 DOI: 10.3389/fphar.2024.1371890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Rhubarb is a frequently used and beneficial traditional Chinese medicine. Wild resources of these plants are constantly being depleted, meaning that rhubarb products have been subjected to an unparalleled level of adulteration. Consequentially, reliable technology is urgently required to verify the authenticity of rhubarb raw materials and commercial botanical drugs. Methods: In this study, the barcode-DNA high-resolution melting (Bar-HRM) method was applied to characterize 63 rhubarb samples (five Polygonaceae species: Rheum tanguticum, Rh. palmatum, Rh. officinale, Rumex japonicus and Ru. sp.) and distinguish the rhubarb contents of 24 traditional Chinese patent medicine (TCPM) samples. Three markers, namely ITS2, rbcL and psbA-trnH, were tested to assess the candidate DNA barcodes for their effectiveness in distinguishing rhubarb from its adulterants. A segment from ITS2 was selected as the most suitable mini-barcode to identify the botanical drug rhubarb in TCPMs. Then, rhubarbs and TCPM samples were subjected to HRM analysis based on the ITS2 barcode. Results: Among the tested barcoding loci, ITS2 displayed abundant sites of variation and was effective in identifying Polygonaceae species and their botanical origins. HRM analysis based on the ITS2 mini-barcode region successfully distinguished the authenticity of five Polygonaceae species and eight batches of TCPMs. Of the 18 TCPM samples, 66.7 % (12 samples) were identified as containing Rh. tanguticum or Rh. officinale. However, 33.3 % were shown to consist of adulterants. Conclusions: These results demonstrated that DNA barcoding combined with HRM is a specific, suitable and powerful approach for identifying rhubarb species and TCPMs, which is crucial to guaranteeing the security of medicinal plants being traded internationally.
Collapse
Affiliation(s)
- Luyi Shen
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| | - Min Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| | - Yanmei Qiu
- Animal Disease Prevention and Control Centre, Bureau of Agriculture and Animal Husbandry and Science and Technology of Seda County, Seda, China
| | - Lin Yang
- Chengdu Agricultural College, Chengdu, China
| | - Yiwen Lu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| | - Hua Li
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Leilei Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| | - Fan Tang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| | - Feijuan Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| | - Hexigeduleng Bao
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
3
|
Raghuveer D, Pai VV, Murali TS, Nayak R. Exploring Anthraquinones as Antibacterial and Antifungal agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Dhanush Raghuveer
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - V. Varsha Pai
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Thokur Sreepathy Murali
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Roopa Nayak
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
4
|
Zhang Q, Wang J, Lan F, Zhai H, Li F, Ma T, Li D, Hou H. Synthesis and DNA interaction of aloe-emodin α-amino phosphate derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Potential of B24N24 nanocluster for sensing and delivering aloe-emodin anticancer drug: A DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Trybus W, Król T, Trybus E. Rhein induces changes in the lysosomal compartment of HeLa cells. J Cell Biochem 2022; 123:1506-1524. [PMID: 35901236 DOI: 10.1002/jcb.30311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
Rhein is an anthraquinone found in Rheum palmatum, used in Chinese medicine. Due to potential anticancer properties, the study assessed its effect on the lysosomal compartment, which indirectly influences cell death. The experiment was performed on HeLa cells by treating them with rhein at concentrations of 100-300 µM. LC3-II protein and caspase 3/7 activity, level of apoptosis, the concentration of reactive oxide species (ROS), and mitochondrial potential (Δψm) were evaluated by the cytometric method. To evaluate the permeability of the lysosomal membrane (LMP), staining with acridine orange and the assessment of activity of cathepsin D and L in the lysosomal and extralysosomal fractions were used. Cell viability was assessed by -(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) and neutral red (NR) assays. Changes in cells were also demonstrated at the level of electron, optical, confocal, and fluorescence microscopy. Inhibition of autophagy was done using chloroquine. Rhein-induced degradation processes were confirmed by an increase in the number of primary lysosomes, autophagosomes, and autolysosomes. At high concentrations, rhein caused the generation of ROS, which induced LMP expressed by quenching of acridine orange fluorescence. These results correlated with a reduction of lysosomes, as visualized in graphical modeling, with the decreased uptake of NR by lysosomes, and increased activity of cathepsin D and L in the extralysosomal fraction. The studies also showed an increase in the activity of caspase 3/7 and a decrease in the expression of Bcl-2 protein, indicative of rhein-stimulated apoptosis. At the same time, we demonstrated that preincubation of cells with chloroquine inhibited rhein-induced autophagy and contributed to increased cytotoxicity to HeLa cells. Rhein also induced DNA damage and led to cycle arrest in the S phase. Our results indicate that rhein, by inducing changes in the lysosomal compartment, indirectly affects apoptosis of HeLa cells and in combination with autophagy inhibitors may be an effective form of anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Teodora Król
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
7
|
Zhao L, Liang J, Liu H, Gong C, Huang X, Hu Y, Liu Q, He Z, Zhang X, Yang S, Rahimnejad S. Yinchenhao Decoction ameliorates the high-carbohydrate diet induced suppression of immune response in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 125:141-151. [PMID: 35569775 DOI: 10.1016/j.fsi.2022.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Yinchenhao Decoction (YD), a Chinese herbal medicine, has been traditionally used for treatment of metabolic liver diseases. A 10-week feeding trail was carried out to examine the effects of YD supplementation in a high carbohydrate diet (HCD) on liver histopathology, immune response, disease resistance, and expression of genes associated with endoplasmic reticulum stress, autophagy, apoptosis, necroptosis and inflammation in juvenile largemouth. A diet containing 9% carbohydrate was used as a low carbohydrate diet (LCD), and a HCD was formulated to contain 18% carbohydrate and supplemented with 0, 0.5, 1, 2 or 4% YD (HCD, HCD+0.5YD, HCD+1YD, HCD+2YD and HCD+4YD). Triplicate groups of fish (5.6 ± 0.2 g) were feed the test diets to visual satiety for 10 weeks. The highest survival rate after Nocardia seriolae challenge was recorded for the HCD+4YD group. YD application led to reduced ACP, AKP, AST and ALT activities. HCD-induced cells swelling, ruptured cell membrane, migrated nuclei and increasing inflammatory cells in hepatocytes were mitigated by YD addition. Moreover, YD decreased the expressions of pro-inflammation genes (TNF-α, IL-1β, IL-8, hepcidin1, NF-κB, COX2, CD80 and CD83) and increased the mRNA levels of anti-inflammation genes (IL-10 and IKBα). The mode of liver cell death was preferably changed to programed apoptosis rather than uncontrolled necroptosis by application of YD in HCD. Furthermore, the expression of UPR genes (IRE1, Eif2α, ATF6, XBP1 and GRP78/Bip) and autophagy genes (LC3-2, BNIP3 and P62) was increased by YD supplementation. In summary, our results demonstrated that YD addition in HCD enhances UPR, autophagy and programed apoptosis maintaining the homeostasis, and decreases uncontrolled necroptosis and inflammation, ultimately leading to improved immune response in largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Chenxin Gong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
8
|
Zhao D, Feng SX, Zhang HJ, Zhang N, Liu XF, Wan Y, Zhou YX, Li JS. Pharmacokinetics, tissue distribution and excretion of five rhubarb anthraquinones in rats after oral administration of effective fraction of anthraquinones from rheum officinale. Xenobiotica 2021; 51:916-925. [PMID: 34110981 DOI: 10.1080/00498254.2021.1940353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhubarb, a famous traditional Chinese medicine, shows a wide range of physiological activities and pharmacological benefits. Rhubarb anthraquinones are perceived as the pharmacologically active compounds of Rhubarb, and understanding metabolism of them is crucial to assure safety and effectiveness of clinical application. In this study, the pharmacokinetics, tissue distribution and excretion of five rhubarb anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion) were systematically investigated after oral administration of rhubarb extract to rats.An HPLC method was developed and validated for quantitation of five rhubarb anthraquinones in rat plasma, tissues, urine and faeces to investigate the Pharmacokinetic characteristics. The results showed that the proposed method was suitable for the quantification of five anthraquinones in plasma, tissue and excreta samples with satisfactory linear (r > 0.99), precision (<10%) and recovery (85.12-104.20%). The plasma concentration profiles showed a quick absorption with the mean Tmax of 0.42-0.75 h and t1/2 of 6.60-15.11 h for five anthraquinones. The analytes were widely distributed in most of the tissues. Approximately 0.13-10.59% and 28.47-81.14% of five anthraquinones were recovered in urine and faeces within 132 h post-dosing, which indicated the major elimination route was faeces excretion.In summary, this study lays a foundation for elucidating the pharmacokinetic rule of rhubarb anthraquinone and the important data can provide reliable scientific resource for further research.
Collapse
Affiliation(s)
- Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China.,Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou, China
| | - Hao-Jie Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China
| | - Na Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue-Fang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China
| | - Yan Wan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou, China
| | | | - Jian-Sheng Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, China.,Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou, China
| |
Collapse
|
9
|
Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus. J Nat Med 2021; 75:840-853. [PMID: 33988779 DOI: 10.1007/s11418-021-01526-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Anthraquinones are a major class of compounds naturally occurring in Asphodelus microcarpus. The pharmacological actions of anthraquinones in cancer cells are known to induce apoptosis or autophagy, and revert multidrug resistance. In this study, five anthraquinone-type analogs were isolated from the methanol extract of A. microcarpus leaves and identified as, emodin, rhein, physcion, aloe-emodin, and emodic acid. Among them, aloe-emodin and emodic-acid strongly inhibited the proliferation, cells-intrinsic NF-κB activity and metastatic ability of breast cancer. Although aloe-emodin inhibited p38 and ERK phosphorylation, emodic-acid more markedly inhibited JNK, in addition to p38 and ERK phosphorylation. Both aloe-emodin and emodic-acid inhibited the secretion of the pro-tumorigenic cytokines IL-1β and IL-6, and VEGF and MMP expression, and subsequently inhibited the invasive and migratory potential of 4T1 cells. Thus, our study demonstrated the effects of aloe-emodin and emodin-acid in controlling the migratory and invasive ability of 4T1 breast cancer cells, in addition to inhibiting NF-κB activity and the expression of its downstream target molecules.
Collapse
|
10
|
Ge H, Shi M, Ma M, Lian XY, Zhang Z. Evaluation of the antiproliferative activity of 106 marine microbial metabolites against human lung cancer cells and potential antiproliferative mechanism of purpuride G. Bioorg Med Chem Lett 2021; 39:127915. [PMID: 33691166 DOI: 10.1016/j.bmcl.2021.127915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022]
Abstract
A total of 106 marine microbial metabolites were evaluated for their antiproliferative activity against human lung cancer cells. Results showed that 23 compounds exhibited activity in inhibiting the proliferation of A549 and H157 cells with IC50 values ranging from 1.5 to 48.2 μM. Pyrrospirone F, chrysophanol, physcion, and purpuride G are the four most active compounds with IC50 values of 1.5-7.3 μM. Further investigation of purpuride G (a newly discovered sesquiterpene lactone) demonstrated its potent antiproliferative activity against six different lung cancer cells of A549, H157, H460, H1299, H1703, and PC9 with IC50 values of 2.1-3.3 μM. The antiproliferative activity of purpuride G against cancer cells is related to block cell cycle, induce apoptosis through regulating the apoptotic proteins Bcl-2 and Bax, and inhibit glycolysis by downregulating two key glycolytic enzymes of hexokinase 2 and pyruvate kinase M2.
Collapse
Affiliation(s)
- Hengju Ge
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Muran Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingzhu Ma
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
11
|
Liang XY, Battini N, Sui YF, Ansari MF, Gan LL, Zhou CH. Aloe-emodin derived azoles as a new structural type of potential antibacterial agents: design, synthesis, and evaluation of the action on membrane, DNA, and MRSA DNA isomerase. RSC Med Chem 2021; 12:602-608. [PMID: 34046631 PMCID: PMC8128066 DOI: 10.1039/d0md00429d] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
As serious global drug resistance motivated the exploration of new structural drugs, we developed a type of novel structural aloe-emodin azoles as potential antibacterial agents in this work. Some target aloe-emodin azoles displayed effective activity against the tested strains, especially tetrazolyl aloe-emodin 4b showed a low MIC value of 2 μg mL-1 towards MRSA, being more efficient than the reference drug norfloxacin (MIC = 8 μg mL-1). Also, the active molecule 4b exhibited low cytotoxicity against LO2 cells with no distinct tendency to induce the concerned resistance towards MRSA. The tetrazolyl derivative 4b was preliminarily investigated for the possible mechanism; it was revealed that tetrazolyl derivative 4b could both disrupt the integrity of MRSA membrane and form 4b-DNA supramolecular complex by intercalating into DNA. Moreover, tetrazolyl aloe-emodin 4b could bind with MRSA DNA isomerase at multiple sites through hydrogen bonds in molecular simulation.
Collapse
Affiliation(s)
- Xin-Yuan Liang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Lin-Ling Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, School of Pharmacy, Chongqing Medical and Pharmaceutical College Chongqing 401331 PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| |
Collapse
|
12
|
Mugas ML, Calvo G, Marioni J, Céspedes M, Martinez F, Sáenz D, Di Venosa G, Cabrera JL, Montoya SN, Casas A. Photodynamic therapy of tumour cells mediated by the natural anthraquinone parietin and blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112089. [PMID: 33271387 DOI: 10.1016/j.jphotobiol.2020.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a treatment for superficial tumours involving the administration of a photosensitiser followed by irradiation. The potential of the natural anthraquinone parietin (PTN) in PDT is still relatively unexploited. In the present work, PTN isolated from the lichen Teoloschistes nodulifer (Nyl.) Hillman (Telochistaceae) was evaluated as a potential photosensitiser on tumour cells employing UVA-Vis and blue light. Blue light of 2 J/cm2 induced 50% death of K562 leukaemic cells treated 1 h with 30 μM PTN (Protocol a). Higher light doses (8 J/cm2) were needed to achieve the same percentage of cell death employing lower PTN concentrations (3 μM) and higher exposure times (24 h) (Protocol b). Cell cycle analysis after both protocols of PTN-PDT revealed a high percentage of sub-G1 cells. PTN was found to be taken up by K562 cells mainly by passive diffusion. Other tumour cells such as ovary cancer IGROV-1 and LM2 mammary carcinoma, as well as the normal keratinocytes HaCaT, were also photosensitised with PTN-PDT. We conclude that PTN is a promising photosensitiser for PDT of superficial malignancies and purging of leukaemic cells, when illuminated with blue light. Thus, this light wavelength is proposed to replace the Vis-UVA lamps generally employed for the photosensitisation of anthraquinones.
Collapse
Affiliation(s)
- María Laura Mugas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina
| | - Gustavo Calvo
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Juliana Marioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina
| | - Mariela Céspedes
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Florencia Martinez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Daniel Sáenz
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - José L Cabrera
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Susana Núñez Montoya
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Aranda-Rivera AK, Cruz-Gregorio A, Briones-Herrera A, Pedraza-Chaverri J. Regulation of autophagy by high- and low-risk human papillomaviruses. Rev Med Virol 2020; 31:e2169. [PMID: 33590566 DOI: 10.1002/rmv.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
While high-risk human papillomavirus (HR-HPV) infection is related to the development of cervical, vulvar, anal, penile and oropharyngeal cancer, low-risk human papillomavirus (LR-HPV) infection is implicated in about 90% of genital warts, which rarely progress to cancer. The carcinogenic role of HR-HPV is due to the overexpression of HPV E5, E6 and E7 oncoproteins which target and modify cellular proteins implicated in cell proliferation, apoptosis and immortalization. LR-HPV proteins also target and modify some of these processes; however, their oncogenic potential is lower than that of HR-HPV. HR-HPVs have substantial differences with LR-HPVs such as viral integration into the cell genome, induction of p53 and retinoblastoma protein degradation, alternative splicing in HR-HPV E6-E7 open reading frames, among others. In addition, LR-HPV can activate the autophagy process in infected cells while HR-HPV infection deactivates it. However, in cancer HR-HPV might reactivate autophagy in advance stages. Autophagy is a catabolic process that maintains cell homoeostasis by lysosomal degradation and recycling of damaged macromolecules and organelles; nevertheless, depending upon cellular context autophagy may also induce cell death. Therefore, autophagy can contribute either as a promotor or as a suppressor of tumours. In this review, we focus on the role of HR-HPV and LR-HPV in autophagy during viral infection and cancer development. Additionally, we review key regulatory molecules such as microRNAs in HPV present during autophagy, and we emphasize the potential use of cancer treatments associated with autophagy in HPV-related cancers.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - Alfredo Cruz-Gregorio
- Laboratorio 225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Alfredo Briones-Herrera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - José Pedraza-Chaverri
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
14
|
Serbian I, Loesche A, Sommerwerk S, Liebing P, Ströhl D, Csuk R. In the Mists of a Fungal Metabolite: An Unexpected Reaction of 2,4,5-Trimethoxyphenylglyoxylic Acid. Molecules 2020; 25:molecules25081978. [PMID: 32340302 PMCID: PMC7221594 DOI: 10.3390/molecules25081978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
The reactions of phenylglyoxylic acids during the synthesis and biological evaluation of fungal metabolites led to the discovery of hitherto unknown compounds with a p-quinone methide (p-QM) structure. The formation of these p-QMs using 13C-labelled starting materials revealed a key-step of this reaction being a retro-Friedel–Crafts alkylation.
Collapse
Affiliation(s)
- Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - Sven Sommerwerk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - Phil Liebing
- Otto von Guericke Universität Magdeburg, Chemisches Institut, Universitätsplatz 2, D-39106 Magdeburg, Germany;
| | - Dieter Ströhl
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (I.S.); (A.L.); (S.S.); (D.S.)
- Correspondence: ; Tel.: +49-345-55-25660
| |
Collapse
|