1
|
Liu H, Wu Z, Du Y, Zhou Q, Chen L, Jin S. Design, One-Step Highly Selective Synthesis and Enhancing Insecticidal Activity and Photo-Self-Degradation of Phenylpyrazole Esterified Derivatives as GABA and nACh Receptor Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2347-2361. [PMID: 38231789 DOI: 10.1021/acs.jafc.3c04645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In the pursuit of novel insecticides with high activity and a unique mode of action on the GABA receptor, a series of phenylpyrazole esterified derivatives (PEs) were synthesized using an improved Pinner reaction with high selectivity. Lewis acid catalysis was employed in a one-step solvent-thermal method to convert the cyano group of fipronil into an ester unit. FeCl3 was found to exhibit the highest selectivity for PEs synthesis, yielding PEs at 96.4%, with the byproduct being phenylpyrazole amide (PE0) at 2.1%. Initial biological assays indicated superior insecticidal activity of the target compounds against Plutella xylostella and Mythimna separata compared to fipronil. Particularly, the smaller and shorter ester units, PE3, PE5, and PE8, demonstrated 2-2.5 times higher insecticidal activity against P. xylostella than fipronil. The higher activity of ester units compared to amide and acylhydrazone units can be attributed to the enhanced lipid solubility of PEs. Additionally, it may be due to the impact of PEs on the neurotransmitter nACh or the coordination of calcium and chloride ions with the ester's -C═O and -O- bonds, blocking the chloride ion channel. Hydrophobic parameters were confirmed by reversed-phase high-performance liquid chromatography (HPLC), indicating the enhanced lipophilicity conferred by the ester units of PEs. Molecular docking and CoMFA analysis preliminarily validated the strong interactions and structure-activity relationships between PEs and the GABA receptor and nACh receptor in P. xylostella. Furthermore, under simulated natural sunlight, PEs exhibited photodegradation capabilities, transforming back into fipronil parent fragments and enhancing their insecticidal activity. Moreover, PEs displayed excellent fluorescent properties, enabling self-detection of residues. These research findings provide new insights and directions for the development of efficient pesticides, with potential wide applications in the fields of medicine and biosensors.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Zhongda Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yanting Du
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Quan Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Lianqing Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
- Department of Chemistry, University of Wisconsin─Platteville, Platteville, Wisconsin 53818, United States
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
2
|
Dong L, Chang W, Yang W, Xu Z, Cheng J, Shao X, Xu X, Li Z. Design, Synthesis, and Biological Activities of Novel Phenylpyrazole Derivatives Containing a Trifluoromethylselenyl Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37471065 DOI: 10.1021/acs.jafc.3c03193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Phenylpyrazole insecticides are widely used for crop protection and public sanitation by blocking gamma-aminobutyric acid (GABA)-gated chloride channels and glutamate-gated chloride (GluCl) channels. Herein, 36 novel phenylpyrazole derivatives containing a trifluoromethylselenyl moiety were designed and synthesized based on the strategy of introducing a selenium element. All derivative structures were characterized by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The insecticidal activity results indicated that some derivatives had good insecticidal activities against Aedes albopictus (A. albopictus) and Plutella xylostella (P. xylostella). The larvicidal activity against mosquitos of compounds 5, 5a, 5k, and 5l at 0.5 mg/L was 60-80%. At a concentration of 500 mg/L, compounds 5, 5a, 5h, 5k, 5l, 5r, 6, 6j, 6k, and 7 showed a 70-100% mortality against P. xylostella. Among them, derivatives 5 and 6 had a better insecticidal effect with mortality rates of 87 and 93% at 50 mg/L, respectively. It was summarized that the different binding poses of fipronil and compounds 5 and 6 in the Musca domestica (M. domestica) GABARs might lead to the disparity in bioactivity from docking studies. Toxicity tests on zebrafish suggested that compound 6 may be slightly less toxic to the embryos than fipronil on hatching rate.
Collapse
Affiliation(s)
- Lefeng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenning Chang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wulin Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Wakil W, Kavallieratos NG, Ghazanfar MU, Usman M. Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34912-34929. [PMID: 35040065 DOI: 10.1007/s11356-021-17527-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
In the current study we have tested the application of Beauveria bassiana (Hypocreales: Cordycipitaceae) alone and in combination with fipronil at two doses against Tribolium castaneum (Coleoptera: Tenebrionidae), Rhyzopertha dominica (Coleoptera: Bostrychidae), Sitophilus granarius (Coleoptera: Curculionidae), and Trogoderma granarium (Coleoptera: Dermestidae) under laboratory and field conditions. At laboratory conditions, the combination of B. bassiana with the highest dose of fipronil produced the highest mortality. At different temperatures, mortality was increased with the increase in temperature. Maximum mortality was observed at 30 °C, followed by 25 °C and 20 °C for all tested species. Different treatments significantly reduced the progeny number in comparison to control groups for all tested species at all temperatures. In the persistence trial, all treatments that included the combinations of B. bassiana with fipronil produced significantly higher mortalities than the single treatments for all tested species over a period of 6 months. Furthermore, all treatments significantly reduced the number of progenies of all insect species in comparison with the control groups over the same storage period. In field trials, mortalities of all tested insect species were significantly higher on wheat treated with B. bassiana, fipronil, or their combinations than on controls for an entire storage period of 180 days. Overall, R. dominica was found the most susceptible species followed by S. granarius, T. castaneum, and T. granarium. The findings of the current study suggest that the use of B. bassiana and fipronil as grain protectants may provide elevated control against major stored-grain insect species during a prolonged period of storage.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
- Senckenberg German Entomological Institute, Eberswalder str. 90, 15374, Müncheberg, Germany.
| | - Nickolas G Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Athens, Attica, Greece.
| | - Muhammad Usman Ghazanfar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Usman
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
4
|
Luo D, Bai H, Zhou X, Wu L, Zhang C, Wu Z, Li Z, Bai L. Synthesis Candidates Herbicide Through Optimization Quinclorac Containing 3-Methyl-1H-pyrazol-5-yl. Front Chem 2021; 9:647472. [PMID: 33937195 PMCID: PMC8080966 DOI: 10.3389/fchem.2021.647472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 11/30/2022] Open
Abstract
To enhance quinclorac potency, twenty-five derivatives were synthesized containing 3-methyl-1H-pyrazol-5-yl by intermediate derivatization methods (IDMs). These compounds were confirmed by melting point (mp), 1HNMR, 13CNMR, and HRMS. The compound 1,3-dimethyl-1H-pyrazol-5-yl 3,7-dichloroquinoline-8-carboxylate (10a) was determined by X-ray diffraction. The activity of these compounds substituent on the phenyl was: electron-drawing group > neutral group > donor-drawing group, the results was like that of substituted benzyl group on pyrazole. The herbicidal activity assays showed that compounds 1-(2-fluorophenyl)-3-methyl-1H-pyrazol-5-yl 3,7-dichloroquinoline-8-carboxylate (8l, EC50 = 10.53 g/ha) and 10a (EC50 = 10.37 g/ha) had an excellent inhibition effect on barnyard grass in greenhouse experiment. Greenhouse safety experiment of rice exhibited almost no difference in plant height and fresh weight treated 10a at stage 1∼2-leaf of rice after 14 days but 8l had a detrimental effect. Two season field assays showed 10a herbicidal activity on barnyard grass at 150 g/ha as equal as 300 g/ha quinclorac in fields in 2019 and 2020. The study demonstrated that 10a could be further researched as a potential herbicide to control barnyard grass in fields.
Collapse
Affiliation(s)
- Dingfeng Luo
- Long Ping Branch, Graduate School of Hunan University, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaomao Zhou
- Long Ping Branch, Graduate School of Hunan University, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lamei Wu
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chengjia Zhang
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhongchi Wu
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zuren Li
- Long Ping Branch, Graduate School of Hunan University, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lianyang Bai
- Long Ping Branch, Graduate School of Hunan University, Changsha, China.,Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
5
|
Ma L, Ou P, Huang X. Divergent synthesis of 1,3,5-tri and 1,3-disubstituted pyrazoles under transition metal-free conditions. Org Biomol Chem 2020; 18:6487-6491. [PMID: 32785327 DOI: 10.1039/d0ob01478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pyrazole cores are common structural motifs existing in various agrochemicals and pharmaceuticals. Herein, a transition metal-free, three-component reaction of arylaldehydes, ethyl acrylate and N-tosylhydrazones is described, which leads to the formation of 1,3,5-trisubstituted and 1,3-disubstituted pyrazoles divergently under slightly different conditions.
Collapse
Affiliation(s)
- Liyao Ma
- College of Chemistry, Fuzhou University, Fuzhou 350116, China and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Pengcheng Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Venugopala KN, Ramachandra P, Tratrat C, Gleiser RM, Bhandary S, Chopra D, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Venugopala R, Deb PK, Chandrashekharappa S, Khalil HE, Alwassil OI, Abed SN, Bataineh YA, Palenge R, Haroun M, Pottathil S, Girish MB, Akrawi SH, Mohanlall V. Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin -4-ones against Malaria Vector Anopheles arabiensis, In Silico ADMET Prediction and Molecular Target Investigation. Molecules 2020; 25:molecules25061316. [PMID: 32183140 PMCID: PMC7144721 DOI: 10.3390/molecules25061316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence:
| | - Pushpalatha Ramachandra
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Raquel M. Gleiser
- CREAN-IMBIV (UNC-CONICET), Av. Valparaíso s.n., Córdoba, Argentina and FCEFyN, AV. Sarsfield 299, Universidad Nacional de Cordoba, Cordoba 5000, Argentina;
| | - Subhrajyoti Bhandary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560 065, India;
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Sara Nidal Abed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Ramachandra Palenge
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Meravanige B. Girish
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| |
Collapse
|