1
|
Yeingst TJ, Helton AM, Hayes DJ. Applications of Diels-Alder Chemistry in Biomaterials and Drug Delivery. Macromol Biosci 2024; 24:e2400274. [PMID: 39461893 DOI: 10.1002/mabi.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Recent studies, leveraging click chemistry reactions, have significantly advanced the fields of biomaterials and drug delivery. Of these click reactions, the Diels-Alder cycloaddition is exceptionally valuable for synthetic organic chemistry and biomaterial design, as it occurs under mild reaction conditions and can undergo a retrograde reaction, under physiologically relevant conditions, to yield the initial reactants. In this review, potential applications of the Diels-Alder reaction are explored within the nexus of biomaterials and drug delivery. This includes an emphasis on key platforms such as polymers, nanoparticles, and hydrogels which utilize Diels-Alder for drug delivery, functionalized surfaces, bioconjugation, and other diverse applications. Specifically, this review will focus on the use of Diels-Alder biomaterials in applications of tissue engineering and cancer therapies, while providing a discussion of the advantages, platforms, and applications of Diels-Alder click chemistry.
Collapse
Affiliation(s)
- Tyus J Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Angelica M Helton
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institute of Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
2
|
Huang W, Cao M, Wu Y, Zhang Y, An S, Pan X, Zhou X, Shao H, Guan Y, Huang G, Gelardi F, Chiti A, Xie F, Liu J, Wei W. Immuno-PET/CT Imaging of Trop2 with [ 18F]AlF-RESCA-T4 Differentiates Lung Cancer from Inflammation. J Nucl Med 2024:jnumed.124.268751. [PMID: 39542697 DOI: 10.2967/jnumed.124.268751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Immuno-PET/CT imaging, a branch of molecular imaging, can noninvasively and specifically visualize biomarker expression across the body. Trophoblast cell surface antigen 2 (Trop2) is a pan-cancer biomarker and plays a crucial role in tumorigenesis through multiple signaling pathways. The study aims to develop and translate novel Trop2 single-domain antibody (sdAb) tracers for clinical use. Methods: Two sdAbs (i.e., His-tagged T4 and His-tag-free RT4) are recombinantly expressed in Chinese hamster ovary cells. The purities and binding kinetics are determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, high-performance liquid chromatography, and surface plasmon resonance assays. The AlF restrained complexing agent (RESCA) method is applied to develop 18F-labeled sdAb tracers ([18F]AlF-RESCA-T4 and [18F]AlF-RESCA-RT4), followed by thorough preclinical imaging and blocking studies on tumor-bearing mice and a pilot clinical trial evaluating the clinical imaging safety and feasibility of [18F]AlF-RESCA-T4 immuno-PET/CT. Results: [18F]AlF-RESCA-T4 and [18F]AlF-RESCA-RT4 possess high radiochemical purities. Preclinical imaging in the T3M-4 tumor model revealed prominent uptake (percentage injected dose/g) of [18F]AlF-RESCA-T4 (11.13 ± 1.53, n = 4) and [18F]AlF-RESCA-RT4 (8.83 ± 1.22, n = 4), which were significantly reduced by coinjection of unlabeled T4 and RT4 in blocking studies. The His-tag removal strategy further optimized the probe's in vivo pharmacokinetics and reduced renal radioactivity accumulation without significantly decreasing tumor uptake. In a pilot clinical trial, [18F]AlF-RESCA-T4 immuno-PET/CT showed promising potency in annotating Trop2 expression and differentiating tumors from inflammatory diseases such as tuberculosis. Conclusion: [18F]AlF-RESCA-T4 and [18F]AlF-RESCA-RT4 can specifically annotate Trop2 expression. Clinical [18F]AlF-RESCA-T4 immuno-PET/CT imaging can screen patients for Trop2-targeted therapies and differentiate lung inflammation from cancer.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Wu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinbing Pan
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyuan Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongda Shao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fabrizia Gelardi
- Università Vita-Salute San Raffaele, Milan, Italy; and
- Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy
| | - Arturo Chiti
- Università Vita-Salute San Raffaele, Milan, Italy; and
- Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy
| | - Fang Xie
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China;
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China;
| |
Collapse
|
3
|
Tian R, Kong J, He Y, Xu G, Chen T, Han J. Radiosynthesis and preclinical evaluations of [ 18F]AlF-RESCA-5F7 as a novel molecular probe for HER2 tumor imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:175-181. [PMID: 39027646 PMCID: PMC11253080 DOI: 10.62347/bvpk1360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
HER2 overexpression is associated with various tumor types and prompted the development of targeted therapies. Previously, iso-[211At]SGMAB-5F7 was developed as a HER2-targeted alpha therapy agent, demonstrating promising therapeutic efficacy in the preclinical stage. Aiming for an 18F-labeled tracer for companion diagnostics in clinical translation, we employed the Al18F-RESCA strategy in our current work and investigated whether [18F]AlF-RESCA-5F7 could visualize HER2 expression in vivo. [18F]AlF-RESCA-5F7 was attained with high radiochemical purity (> 99%) and molar activity in the range of 16.5 ± 8.8 GBq/μmol (n = 8). Compared to previously reported radiotracers that contained 5F7 as the HER2-targeting carrier and fluorine-18 as the positron-emitting isotope, the radiosynthesis was simplified to one single step within 30 min. The dissociation constant of [18F]AlF-RESCA-5F7 was determined as 3.3 nM via saturation binding assay using SKOV3 ovarian carcinoma cells. Tumor uptake of the novel tracer in Balb/c nude mice bearing SKOV3 xenografts was 4.69 ± 1.51, 3.34 ± 0.82 and 3.77 ± 0.99 %ID/g at 1, 2, and 4 h post-injection. Even though high retention of radioactivity was seen in the kidneys, micro-PET/CT imaging of [18F]AlF-RESCA-5F7 delineated the tumor up to 4 h post-injection with minimal activity in the gallbladder, intestines, and bone. This study suggests that [18F]AlF-RESCA-5F7 is a promising HER2 PET radiotracer with an eased radiolabeling method. Whether [18F]AlF-RESCA-5F7 could work as a companion diagnostic agent to assist in patient stratification and treatment monitoring of iso-[211At]SGMAB-5F7 warrants further investigation.
Collapse
Affiliation(s)
- Ruhua Tian
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Jinping Kong
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Yingfang He
- Institute of Radiation Medicine, Fudan UniversityNo. 2094 Xietu Road, Shanghai 200032, China
| | - Guoqiang Xu
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
| | - Junbin Han
- Department of Physiology, School of Basic Medicine, Guizhou Medical UniversityGuiyang 550009, Guizhou, China
- Institute of Radiation Medicine, Fudan UniversityNo. 2094 Xietu Road, Shanghai 200032, China
| |
Collapse
|
4
|
Steffann M, Bluet G, Roy S, Aubert C, Fouquet E, Hermange P. 18 F-Fluorination of a supported 2-(aryl-di-tert-butylsilyl)-N-methyl-imidazole for indirect 18 F-labeling of a V H H single-variable domain. J Labelled Comp Radiopharm 2024; 67:104-110. [PMID: 38224624 DOI: 10.1002/jlcr.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Anchoring an imidazole-di-tert-butyl-arylsilane possessing an azido group to a polystyrene resin provided a heterogeneous precursor that was radiolabeled easily using aqueous [18 F]fluoride. After optimizing the conditions (i.e., using DMSO as solvent and heating at 160°C for 15 min), the desired [18 F]fluorosilane was obtained in 24% radiochemical yield (RCY) and 78% radiochemical purity (RCP) using solid-phase extraction as sole purification. Then, this compound was conjugated by strain-promoted alkyne-azide cycloaddition to a model single-variable domain possessing a cyclooctyne tag, yielding to the desired 18 F-labeled bioconjugate in 2% RCY and >95% RCP after purification by a size exclusion chromatography.
Collapse
Affiliation(s)
- Marine Steffann
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Guillaume Bluet
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Sébastien Roy
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Catherine Aubert
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Eric Fouquet
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
| | - Philippe Hermange
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
| |
Collapse
|
5
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
6
|
Xu M, Ma X, Pigga JE, Zhang H, Wang S, Zhao W, Deng H, Wu AM, Liu R, Wu Z, Fox JM, Li Z. Development of 18F-Labeled hydrophilic trans-cyclooctene as a bioorthogonal tool for PET probe construction. Chem Commun (Camb) 2023; 59:14387-14390. [PMID: 37877355 PMCID: PMC10785124 DOI: 10.1039/d3cc04212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the development of a hydrophilic 18F-labeled a-TCO derivative [18F]3 (log P = 0.28) through a readily available precursor and a single-step radiofluorination reaction (RCY up to 52%). We demonstrated that [18F]3 can be used to construct not only multiple small molecule/peptide-based PET agents, but protein/diabody-based imaging probes in parallel.
Collapse
Affiliation(s)
- Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Jessica E Pigga
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - He Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Shuli Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Weiling Zhao
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Huaifu Deng
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Anna M Wu
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California, 91010, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Joseph M Fox
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
7
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
8
|
Beaufrez J, Guillouet S, Seimbille Y, Perrio C. Synthesis, Fluorine-18 Radiolabeling, and In Vivo PET Imaging of a Hydrophilic Fluorosulfotetrazine. Pharmaceuticals (Basel) 2023; 16:ph16050636. [PMID: 37242419 DOI: 10.3390/ph16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The development of 18F-fluorotetrazines, suitable for the radiolabeling of biologics such as proteins and antibodies by IEDDA ligation, represents a major challenge, especially for pre-targeting applications. The hydrophilicity of the tetrazine has clearly become a crucial parameter for the performance of in vivo chemistry. In this study, we present the design, the synthesis, the radiosynthesis, the physicochemical characterization, the in vitro and in vivo stability, as well as the pharmacokinetics and the biodistribution determined by PET imaging in healthy animals of an original hydrophilic 18F-fluorosulfotetrazine. This tetrazine was prepared and radiolabelled with fluorine-18 according to a three-step procedure, starting from propargylic butanesultone as the precursor. The propargylic sultone was converted into the corresponding propargylic fluorosulfonate by a ring-opening reaction with 18/19F-fluoride. Propargylic 18/19F-fluorosulfonate was then subject to a CuACC reaction with an azidotetrazine, followed by oxidation. The overall automated radiosynthesis afforded the 18F-fluorosulfotetrazine in 29-35% DCY, within 90-95 min. The experimental LogP and LogD7.4 values of -1.27 ± 0.02 and -1.70 ± 0.02, respectively, confirmed the hydrophilicity of the 18F-fluorosulfotetrazine. In vitro and in vivo studies displayed a total stability of the 18F-fluorosulfotetrazine without any traces of metabolization, the absence of non-specific retention in all organs, and the appropriate pharmacokinetics for pre-targeting applications.
Collapse
Affiliation(s)
- Jason Beaufrez
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Stéphane Guillouet
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
| | - Yann Seimbille
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Cécile Perrio
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
| |
Collapse
|
9
|
Yang E, Liu Q, Huang G, Liu J, Wei W. Engineering nanobodies for next-generation molecular imaging. Drug Discov Today 2022; 27:1622-1638. [PMID: 35331925 DOI: 10.1016/j.drudis.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
In recent years, nanobodies have emerged as ideal imaging agents for molecular imaging. Molecular nanobody imaging combines the specificity of nanobodies with the sensitivity of state-of-the-art molecular imaging modalities, such as positron emission tomography (PET). Given that modifications of nanobodies alter their pharmacokinetics (PK), the engineering strategies that combine nanobodies with radionuclides determine the effectiveness, reliability, and safety of the molecular imaging probes. In this review, we introduce conjugation strategies that have been applied to nanobodies, including random conjugation, 99mTc tricarbonyl chemistry, sortase A-mediated site-specific conjugation, maleimide-cysteine chemistry, and click chemistries. We also summarize the latest advances in nanobody tracers, emphasizing their preclinical and clinical use. In addition, we elaborate on nanobody-based near-infrared fluorescence (NIRF) imaging and image-guided surgery.
Collapse
Affiliation(s)
- Erpeng Yang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
10
|
Lecocq Q, Debie P, Puttemans J, Awad RM, De Beck L, Ertveldt T, De Vlaeminck Y, Goyvaerts C, Raes G, Keyaerts M, Breckpot K, Devoogdt N. Evaluation of single domain antibodies as nuclear tracers for imaging of the immune checkpoint receptor human lymphocyte activation gene-3 in cancer. EJNMMI Res 2021; 11:115. [PMID: 34727262 PMCID: PMC8563901 DOI: 10.1186/s13550-021-00857-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Recent advancements in the field of immune-oncology have led to a significant increase in life expectancy of patients with diverse forms of cancer, such as hematologic malignancies, melanoma and lung cancer. Unfortunately, these encouraging results are not observed in the majority of patients, who remain unresponsive and/or encounter adverse events. Currently, researchers are collecting more insight into the cellular and molecular mechanisms that underlie these variable responses. As an example, the human lymphocyte activation gene-3 (huLAG-3), an inhibitory immune checkpoint receptor, is increasingly studied as a therapeutic target in immune-oncology. Noninvasive molecular imaging of the immune checkpoint programmed death protein-1 (PD-1) or its ligand PD-L1 has shown its value as a strategy to guide and monitor PD-1/PD-L1-targeted immune checkpoint therapy. Yet, radiotracers that allow dynamic, whole body imaging of huLAG-3 expression are not yet described. We here developed single-domain antibodies (sdAbs) that bind huLAG-3 and showed that these sdAbs can image huLAG-3 in tumors, therefore representing promising tools for further development into clinically applicable radiotracers.
Collapse
Affiliation(s)
- Q Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - P Debie
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K, 1090, Brussels, Belgium
| | - J Puttemans
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K, 1090, Brussels, Belgium
| | - R M Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - L De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - T Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Y De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - C Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - G Raes
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium.,Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - M Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K, 1090, Brussels, Belgium.,Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - K Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium.
| | - N Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K, 1090, Brussels, Belgium.
| |
Collapse
|
11
|
Zhou Z, Meshaw R, Zalutsky MR, Vaidyanathan G. Site-Specific and Residualizing Linker for 18F Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single-Domain Antibody Fragment. J Nucl Med 2021; 62:1624-1630. [PMID: 33637584 PMCID: PMC8612331 DOI: 10.2967/jnumed.120.261446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Single-domain antibody fragments (sdAbs) are promising vectors for immuno-PET; however, better methods for labeling sdAbs with 18F are needed. Herein, we evaluate a site-specific strategy using an 18F residualizing motif and the anti-epidermal growth factor receptor 2 (HER2) sdAb 5F7 bearing an engineered C-terminal GGC tail (5F7GGC). Methods: 5F7GGC was site-specifically attached with a tetrazine-bearing agent via thiol-maleimide reaction. The resultant conjugate was labeled with 18F by inverse electron demand Diels-Alder cycloaddition with a trans-cyclooctene attached to 6-18F-fluoronicotinoyl moiety via a renal brush border enzyme-cleavable linker and a PEG4 chain (18F-5F7GGC). For comparisons, 5F7 sdAb was labeled using the prototypical residualizing agent, N-succinimidyl 3-(guanidinomethyl)-5-125I-iodobenzoate (iso-125I-SGMIB). The 2 labeled sdAbs were compared in paired-label studies performed in the HER2-expressing BT474M1 breast carcinoma cell line and athymic mice bearing BT474M1 subcutaneous xenografts. Small-animal PET/CT imaging after administration of 18F-5F7GGC in the above mouse model was also performed. Results:18F-5F7GGC was synthesized in an overall radiochemical yield of 8.9% ± 3.2% with retention of HER2 binding affinity and immunoreactivity. The total cell-associated and intracellular activity for 18F-5F7GGC was similar to that for coincubated iso-125I-SGMIB-5F7. Likewise, the uptake of 18F-5F7GGC in BT474M1 xenografts in mice was similar to that for iso-125I-SGMIB-5F7; however, 18F-5F7GGC exhibited significantly more rapid clearance from the kidney. Small-animal PET/CT imaging confirmed high uptake and retention in the tumor with very little background activity at 3 h except in the bladder. Conclusion: This site-specific and residualizing 18F-labeling strategy could facilitate clinical translation of 5F7 anti-HER2 sdAb as well as other sdAbs for immuno-PET.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
12
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|