1
|
Schmit M, Hasan MM, Dongol Y, Cardoso FC, Kuiper MJ, Lewis RJ, Duggan PJ, Tuck KL. N-Sulfonylphenoxazines as neuronal calcium ion channel blockers. RSC Med Chem 2024; 15:2400-2412. [PMID: 39026639 PMCID: PMC11253866 DOI: 10.1039/d4md00336e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 07/20/2024] Open
Abstract
Neuropathic pain is a type of chronic pain, usually caused by nerve damage, that responds poorly to traditional pain therapies. The N-type calcium channel (CaV2.2) is a well-validated pharmacological target to treat this condition. In order to further improve the inhibition of the N-type calcium channel relative to previously described inhibitors, and also address their problematic instability in blood plasma, the development of N-sulfonylphenoxazines as new calcium channel inhibitors was pursued. A series of N-sulfonylphenoxazines bearing ammonium side chains were synthesised and tested for their ability to inhibit both CaV2.2 and CaV3.2 (T-type) neuronal ion channels. Compounds with low micromolar activity in CaV2.2 were identified, equivalent to the most effective reported for this class of bioactive, and calculations based on their physical and chemical characteristics suggest that the best performing compounds have a high likelihood of being able to penetrate the blood-brain barrier. Representative N-sulfonylphenoxazines were tested for their stability in rat plasma and were found to be much more resilient than the previously reported N-acyl analogues. These compounds were also found to be relatively stable in an in vitro liver microsome metabolism model, the first time that this has been investigated for this class of compound. Finally, molecular modelling of the CaV2.2 channel was used to gain an understanding of the mode of action of these inhibitors at a molecular level. They appear to bind in a part of the channel, in and above its selectivity filter, in a way that hinders its ability to undergo the conformational changes required to open and allow calcium ions to pass through.
Collapse
Affiliation(s)
- Matthieu Schmit
- School of Chemistry, Monash University Victoria 3800 Australia
- CSIRO Manufacturing, Research Way Clayton Victoria 3168 Australia
| | - Md Mahadhi Hasan
- Institute for Molecular Bioscience, The University of Queensland St. Lucia QLD 4072 Australia
| | - Yashad Dongol
- Institute for Molecular Bioscience, The University of Queensland St. Lucia QLD 4072 Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland St. Lucia QLD 4072 Australia
| | | | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland St. Lucia QLD 4072 Australia
| | - Peter J Duggan
- CSIRO Manufacturing, Research Way Clayton Victoria 3168 Australia
- College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Victoria 3800 Australia
| |
Collapse
|
2
|
Bispat AS, Cardoso FC, Hasan MM, Dongol Y, Wilcox R, Lewis RJ, Duggan PJ, Tuck KL. Inhibition of N-type calcium channels by phenoxyaniline and sulfonamide analogues. RSC Med Chem 2024; 15:916-936. [PMID: 38516585 PMCID: PMC10953480 DOI: 10.1039/d3md00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Building on previous investigations, structural modifications to the neuronal calcium ion channel blocker MONIRO-1 and related compounds were conducted that included replacement of the amide linker with an aniline and isosteric sulfonamide moiety, and the previously used strategy of substitution of the guanidinium group with less hydrophilic amine functionalities. A comprehensive SAR study revealed a number of phenoxyaniline and sulfonamide compounds that were more potent or had similar potency for the CaV2.2 and CaV3.2 channel compared to MONIRO-1 when evaluated in a FLIPR-based intracellular calcium response assay. Cytotoxicity investigations indicated that the sulfonamide analogues were well tolerated by Cos-7 cells at dosages required to inhibit both calcium ion channels. The sulfonamide derivatives were the most promising CaV2.2 inhibitors developed by us to date due, possessing high stability in plasma, low toxicity (estimated therapeutic index > 10), favourable CNS MPO scores (4.0-4.4) and high potency and selectivity, thereby, making this class of compounds suitable candidates for future in vivo studies.
Collapse
Affiliation(s)
- Anjie S Bispat
- School of Chemistry, Monash University Victoria 3800 Australia
- CSIRO Manufacturing, Research Way Clayton Victoria 3168 Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Md Mahadhi Hasan
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Yashad Dongol
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Ricki Wilcox
- School of Chemistry, Monash University Victoria 3800 Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Peter J Duggan
- CSIRO Manufacturing, Research Way Clayton Victoria 3168 Australia
- College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Victoria 3800 Australia
| |
Collapse
|
3
|
Cardoso FC, Schmit M, Kuiper MJ, Lewis RJ, Tuck KL, Duggan PJ. Inhibition of N-type calcium ion channels by tricyclic antidepressants - experimental and theoretical justification for their use for neuropathic pain. RSC Med Chem 2022; 13:183-195. [PMID: 35308021 PMCID: PMC8864487 DOI: 10.1039/d1md00331c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
A number of tricyclic antidepressants (TCAs) are commonly prescribed off-label for the treatment of neuropathic pain. The blockade of neuronal calcium ion channels is often invoked to partially explain the analgesic activity of TCAs, but there has been very limited experimental or theoretical evidence reported to support this assertion. The N-type calcium ion channel (CaV2.2) is a well-established target for the treatment of neuropathic pain and in this study a series of eleven TCAs and two closely related drugs were shown to be moderately effective inhibitors of this channel when endogenously expressed in the SH-SY5Y neuroblastoma cell line. A homology model of the channel, which matches closely a recently reported Cryo-EM structure, was used to investigate via docking and molecular dynamics experiments the possible mode of inhibition of CaV2.2 channels by TCAs. Two closely related binding modes, that occur in the channel cavity that exists between the selectivity filter and the internal gate, were identified. The TCAs are predicted to position themselves such that their ammonium side chains interfere with the selectivity filter, with some, such as amitriptyline, also appearing to hinder the channel's ability to open. This study provides the most comprehensive evidence to date that supports the notion that the blockade of neuronal calcium ion channels by TCAs is at least partially responsible for their analgesic effect.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Matthieu Schmit
- School of Chemistry, Monash University Victoria 3800 Australia
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | | | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD 4072 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Victoria 3800 Australia
| | - Peter J Duggan
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
- College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| |
Collapse
|
4
|
Cardoso FC, Castro J, Grundy L, Schober G, Garcia-Caraballo S, Zhao T, Herzig V, King GF, Brierley SM, Lewis RJ. A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain 2021; 162:569-581. [PMID: 32826759 DOI: 10.1097/j.pain.0000000000002041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT Chronic pain is a serious debilitating condition that affects ∼20% of the world's population. Currently available drugs fail to produce effective pain relief in many patients and have dose-limiting side effects. Several voltage-gated sodium (NaV) and calcium (CaV) channels are implicated in the etiology of chronic pain, particularly NaV1.1, NaV1.3, NaV1.7-NaV1.9, CaV2.2, and CaV3.2. Numerous NaV and CaV modulators have been described, but with few exceptions, they display poor potency and/or selectivity for pain-related channel subtypes. Here, we report the discovery and characterization of 2 novel tarantula-venom peptides (Tap1a and Tap2a) isolated from Theraphosa apophysis venom that modulate the activity of both NaV and CaV3 channels. Tap1a and Tap2a inhibited on-target NaV and CaV3 channels at nanomolar to micromolar concentrations and displayed moderate off-target selectivity for NaV1.6 and weak affinity for NaV1.4 and NaV1.5. The most potent inhibitor, Tap1a, nearly ablated neuronal mechanosensitivity in afferent fibers innervating the colon and the bladder, with in vivo intracolonic administration reversing colonic mechanical hypersensitivity in a mouse model of irritable bowel syndrome. These findings suggest that targeting a specific combination of NaV and CaV3 subtypes provides a novel route for treatment of chronic visceral pain.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Tianjiao Zhao
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Volker Herzig
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Glenn F King
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|