1
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024. [PMID: 39451037 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Tomohara K, Kusaba S, Masui M, Uchida T, Nambu H, Nose T. Ammonium carboxylates in the ammonia-Ugi reaction: one-pot synthesis of α,α-disubstituted amino acid derivatives including unnatural dipeptides. Org Biomol Chem 2024; 22:6999-7005. [PMID: 39118586 DOI: 10.1039/d4ob00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Despite the remarkable developments of the Ugi reaction and its variants, the use of ammonia in the Ugi reaction has long been recognized as impractical and unsuccessful. Indeed, the ammonia-Ugi reaction often requires harsh reaction conditions, such as heating and microwave irradiation, and competes with the Passerini reaction, thereby resulting in low yields. This study describes a robust and practical ammonia-Ugi reaction protocol. Using originally prepared ammonium carboxylates in trifluoroethanol, the ammonia-Ugi reaction proceeded at room temperature in high yields and showed a broad substrate scope, thus synthesizing a variety of α,α-disubstituted amino acid derivatives, including unnatural dipeptides. The reaction required no condensing agents and proceeded without racemization of the chiral stereocenter of α-amino acids. Furthermore, using this protocol, we quickly synthesized a novel dipeptide, D-Leu-Aic-NH-CH2Ph(p-F), which exhibited a potent inhibitory activity against α-chymotrypsin with a Ki value of 0.091 μM.
Collapse
Affiliation(s)
- Keisuke Tomohara
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Satoru Kusaba
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Mana Masui
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisanori Nambu
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Imayoshi A, Yokoo H, Kawaguchi M, Tsubaki K, Oba M. Visualization of the Plasmid DNA Delivery System by Complementary Fluorescence Labeling of Arginine-Rich Peptides. Chem Pharm Bull (Tokyo) 2024; 72:856-861. [PMID: 39370260 DOI: 10.1248/cpb.c24-00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cell-penetrating peptides, such as arginine-rich peptides, encapsulate nucleic acid drugs and deliver them to intracellular compartments. Comprehensive tracking of drug delivery systems (DDSs) provides information about the behavior of the drug as well as the fate of the drug carrier after drug release, which is crucial for minimizing side effects. In this study, we labeled peptides designed to carry plasmid DNA with two types of dyes, traditional dye fluorescein and aggregation-induced emission (AIE) dye tetraphenylethylene, and subsequently tracked the DDS through the complementary ON and OFF fluorescence behaviors of the dyes. Traditional fluorescent dyes are susceptible to aggregation-caused quenching during bioimaging, a problem that is mitigated by using AIE dyes. However, by using both of these contrasting fluorescent labels, we were able to clearly visualize the DDS at different stages of its deployment, from drug transport and delivery to carrier dissociation and migration, demonstrating the feasibility of accurate DDS visualization by complementary fluorescence labeling.
Collapse
Affiliation(s)
- Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Hidetomo Yokoo
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- National Institute of Health Sciences
| | - Masashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Makoto Oba
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
5
|
Li Q, Liu Y, Li C. Picolinaldehyde-Zinc(II)-Palladium(0) Catalytic System for the Asymmetric α-Allylation of N-Unprotected Amino Esters. Chemistry 2023; 29:e202301348. [PMID: 37237423 DOI: 10.1002/chem.202301348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Reported in this work is a synergistic ternary achiral picolinaldehyde-Zn(II)-chiral palladium complex system for the highly enantioselective α-allylation of N-unprotected amino esters. By utilizing a variety of allylic carbonates or vinyl benzoxazinanones as substrates, α-allyl α-amino esters were obtained in high yields (up to 96 %) with high enantioselectivities (up to 98 % ee). Control experiments suggest that the coordination of Zn(II) with the Schiff base intermediate enhances the acidity of the α-C-H bonds of amino esters, thereby favoring α-allylation over intrinsic N-allylation. Furthermore, NMR studies reveal an interaction between the chiral palladium complex and the Zn(II)-Schiff base intermediate, leading to the formation of a picolinaldehyde-Zn(II)-Pd(0) catalytic system.
Collapse
Affiliation(s)
- Qian Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
6
|
An J, Tsopmejio ISN, Wang Z, Li W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023; 28:molecules28020908. [PMID: 36677965 PMCID: PMC9863410 DOI: 10.3390/molecules28020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Peptides, functional nutrients with a size between those of large proteins and small amino acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical medicine and have revealed immunomodulatory and anti-inflammatory properties which could make them effective in healing skin wounds. This review sorted and summarized the relevant literature about peptides during the past decade. Recent works on the extraction, modification and synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the skin were extensively explored, providing ideas for the development and innovation of peptides and laying a knowledge foundation for the clinical application of peptides.
Collapse
Affiliation(s)
- Jiabing An
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| |
Collapse
|
7
|
Hao M, Zhang L, Chen P. Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides. Int J Mol Sci 2022; 23:ijms23169038. [PMID: 36012300 PMCID: PMC9409441 DOI: 10.3390/ijms23169038] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been discovered to deliver chemical drugs, nucleic acids, and macromolecules to permeate cell membranes, creating a novel route for exogenous substances to enter cells. Up until now, various sequence structures and fundamental action mechanisms of CPPs have been established. Among them, arginine-rich peptides with unique cell penetration properties have attracted substantial scientific attention. Due to the positively charged essential amino acids of the arginine-rich peptides, they can interact with negatively charged drug molecules and cell membranes through non-covalent interaction, including electrostatic interactions. Significantly, the sequence design and the penetrating mechanisms are critical. In this brief synopsis, we summarize the transmembrane processes and mechanisms of arginine-rich peptides; and outline the relationship between the function of arginine-rich peptides and the number of arginine residues, arginine optical isomers, primary sequence, secondary and ternary structures, etc. Taking advantage of the penetration ability, biomedical applications of arginine-rich peptides have been refreshed, including drug/RNA delivery systems, biosensors, and blood-brain barrier (BBB) penetration. Understanding the membrane internalization mechanisms and design strategies of CPPs will expand their potential applications in clinical trials.
Collapse
Affiliation(s)
- Minglu Hao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| |
Collapse
|
8
|
Ueda A, Makura Y, Kakazu S, Kato T, Umeno T, Hirayama K, Doi M, Oba M, Tanaka M. E-Selective Ring-Closing Metathesis in α-Helical Stapled Peptides Using Carbocyclic α,α-Disubstituted α-Amino Acids. Org Lett 2022; 24:1049-1054. [PMID: 35073100 DOI: 10.1021/acs.orglett.1c04256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an E-selective ring-closing metathesis reaction in α-helical stapled peptides at positions i and i + 4. The use of two chiral carbocyclic α,α-disubstituted α-amino acids, (1S,3S)-Ac5c3OAll and (1R,3S)-Ac5c3OAll, provides a high E-selectivity of a ≤59:1 E:Z ratio, while mixtures with E:Z ratios of 2.1-0.5:1 were produced with standard acyclic (S)-(4-pentenyl)alanine amino acids. A stapled octapeptide composed of (1S,3S)- and (1R,3S)-Ac5c3OAll amino acids showed a right-handed α-helical crystal structure.
Collapse
Affiliation(s)
- Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Sana Kakazu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takuma Kato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Tomohiro Umeno
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuhiro Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
9
|
Makura Y, Ueda A, Kato T, Iyoshi A, Higuchi M, Doi M, Tanaka M. X-ray Crystallographic Structure of α-Helical Peptide Stabilized by Hydrocarbon Stapling at i, i + 1 Positions. Int J Mol Sci 2021; 22:ijms22105364. [PMID: 34069753 PMCID: PMC8160927 DOI: 10.3390/ijms22105364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrocarbon stapling is a useful tool for stabilizing the secondary structure of peptides. Among several methods, hydrocarbon stapling at i,i + 1 positions was not extensively studied, and their secondary structures are not clarified. In this study, we investigate i,i + 1 hydrocarbon stapling between cis-4-allyloxy-l-proline and various olefin-tethered amino acids. Depending on the ring size of the stapled side chains and structure of the olefin-tethered amino acids, E- or Z-selectivities were observed during the ring-closing metathesis reaction (E/Z was up to 8.5:1 for 17–14-membered rings and up to 1:20 for 13-membered rings). We performed X-ray crystallographic analysis of hydrocarbon stapled peptide at i,i + 1 positions. The X-ray crystallographic structure suggested that the i,i + 1 staple stabilizes the peptide secondary structure to the right-handed α-helix. These findings are especially important for short oligopeptides because the employed stapling method uses two minimal amino acid residues adjacent to each other.
Collapse
Affiliation(s)
- Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
| | - Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
- Correspondence: (A.U.); (M.T.); Tel.: +81-95-819-2425 (A.U.); +81-95-819-2423 (M.T.)
| | - Takuma Kato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan; (T.K.); (M.D.)
| | - Akihiro Iyoshi
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
| | - Mei Higuchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan; (T.K.); (M.D.)
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
- Correspondence: (A.U.); (M.T.); Tel.: +81-95-819-2425 (A.U.); +81-95-819-2423 (M.T.)
| |
Collapse
|