1
|
Wang X, Xiong L, Zhu Y, Liu S, Zhao W, Wu X, Seydimemet M, Li L, Ding P, Lin X, Liu J, Wang X, Duan Z, Lu W, Suo Y, Cui M, Yue J, Jin R, Zheng M, Xu Y, Mei L, Hu H, Lu X. Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors. J Am Chem Soc 2024; 146:33983-33996. [PMID: 39574309 DOI: 10.1021/jacs.4c12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CLpro, Nsp5) and the papain-like protease (PLpro) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of LU9, a nonpeptide 3CLpro inhibitor with an IC50 of 0.34 μM, and LU10, whose crystal structure showed a distinct binding mode within the 3CLpro active site. The X-ray cocrystal structure of SARS-CoV-2 PLpro in complex with XD5 uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor XJ5 achieved a potency of 0.12 μM following comprehensive structure-activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liwei Xiong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Ying Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengnisa Seydimemet
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Linjie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Peiqi Ding
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xian Lin
- Suzhou Institute of Materia Medica, No. 108 Yuxin Road, Suzhou, Jiangsu 215123, P. R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengqing Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Lianghe Mei
- Suzhou Institute of Materia Medica, No. 108 Yuxin Road, Suzhou, Jiangsu 215123, P. R. China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Gruber F, McDonagh AW, Rose V, Hunter J, Guasch L, Martin RE, Geigle SN, Britton R. sp 3 -Rich Heterocycle Synthesis on DNA: Application to DNA-Encoded Library Production. Angew Chem Int Ed Engl 2024; 63:e202319836. [PMID: 38330151 DOI: 10.1002/anie.202319836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
DNA encoded library (DEL) synthesis represents a convenient means to produce, annotate and store large collections of compounds in a small volume. While DELs are well suited for drug discovery campaigns, the chemistry used in their production must be compatible with the DNA tag, which can limit compound class accessibility. As a result, most DELs are heavily populated with peptidomimetic and sp2 -rich molecules. Herein, we show that sp3 -rich mono- and bicyclic heterocycles can be made on DNA from ketochlorohydrin aldol products through a reductive amination and cyclization process. The resulting hydroxypyrrolidines possess structural features that are desirable for DELs and target a distinct region of pharmaceutically relevant chemical space.
Collapse
Affiliation(s)
- Felix Gruber
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Victoria Rose
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - James Hunter
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stefanie N Geigle
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
4
|
Jin H, Cui D, Fan Y, Li G, Zhong Z, Wang Y. Recent advances in bioaffinity strategies for preclinical and clinical drug discovery: Screening natural products, small molecules and antibodies. Drug Discov Today 2024; 29:103885. [PMID: 38278476 DOI: 10.1016/j.drudis.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Bioaffinity drug screening strategies have gained popularity in preclinical and clinical drug discovery for natural products, small molecules and antibodies owing to their superior selectivity, the large number of compounds to be screened and their ability to minimize the time and expenses of the drug discovery process. This paper provides a systematic summary of the principles of commonly used bioaffinity-based screening methods, elaborates on the success of bioaffinity in clinical drug development and summarizes the active compounds, preclinical drugs and marketed drugs obtained through affinity screening methods. Owing to the high demand for new drugs, bioaffinity-guided screening techniques will play a greater part in clinical drug development.
Collapse
Affiliation(s)
- Haochun Jin
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dianxin Cui
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
5
|
Ma P, Zhang S, Huang Q, Gu Y, Zhou Z, Hou W, Yi W, Xu H. Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharm Sin B 2024; 14:492-516. [PMID: 38322331 PMCID: PMC10840438 DOI: 10.1016/j.apsb.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 02/08/2024] Open
Abstract
DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Fitzgerald P, Cochrane WG, Paegel BM. Dose-Response Activity-Based DNA-Encoded Library Screening. ACS Med Chem Lett 2023; 14:1295-1303. [PMID: 37736190 PMCID: PMC10510511 DOI: 10.1021/acsmedchemlett.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
Dose-response, or "conforming" behavior, increases confidence in a screening hit's authenticity. Here, we demonstrate dose-response solid-phase DNA-encoded library (DEL) screening. Compound dose in microfluidic droplets is modulated via the UV intensity of photocleavage from DEL beads. A 55,296-member DEL was screened at different UV intensities against model enzyme drug targets factor Xa (FXa) and autotaxin (ATX). Both screens yielded photochemical dose-dependent hit rates (FXa hit rates of 0.08/0.05% at 100/30% UV exposure; ATX hit rates of 0.24/0.08% at 100/20% UV exposure). FXa hits contained structures reflective of FXa inhibitors and four hits inhibited FXa (IC50 = 4.2 ± 0.1, 7.4 ± 0.3, 9.0 ± 0.3, and 19 ± 2 μM.) The top ATX hits (two dihydrobenzamidazolones and a tetrahydroisoquinoline) were validated as inhibitors (IC50 = 7 ± 2, 13 ± 2, and 1 ± 0.3 μM). Photochemical dose-response DEL screening data prioritized hits for synthesis, the rate-limiting step in DEL lead identification.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Wesley G. Cochrane
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Departments
of Chemistry & Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Zhang C, Pitman M, Dixit A, Leelananda S, Palacci H, Lawler M, Belyanskaya S, Grady L, Franklin J, Tilmans N, Mobley DL. Building Block-Based Binding Predictions for DNA-Encoded Libraries. J Chem Inf Model 2023; 63:5120-5132. [PMID: 37578123 PMCID: PMC10466377 DOI: 10.1021/acs.jcim.3c00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/15/2023]
Abstract
DNA-encoded libraries (DELs) provide the means to make and screen millions of diverse compounds against a target of interest in a single experiment. However, despite producing large volumes of binding data at a relatively low cost, the DEL selection process is susceptible to noise, necessitating computational follow-up to increase signal-to-noise ratios. In this work, we present a set of informatics tools to employ data from prior DEL screen(s) to gain information about which building blocks are most likely to be productive when designing new DELs for the same target. We demonstrate that similar building blocks have similar probabilities of forming compounds that bind. We then build a model from the inference that the combined behavior of individual building blocks is predictive of whether an overall compound binds. We illustrate our approach on a set of three-cycle OpenDEL libraries screened against soluble epoxide hydrolase (sEH) and report performance of more than an order of magnitude greater than random guessing on a holdout set, demonstrating that our model can serve as a baseline for comparison against other machine learning models on DEL data. Lastly, we provide a discussion on how we believe this informatics workflow could be applied to benefit researchers in their specific DEL campaigns.
Collapse
Affiliation(s)
- Chris Zhang
- Department
of Chemistry, University of California,
Irvine, 1120 Natural Sciences II, Irvine, California 92697, United States
| | - Mary Pitman
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Irvine, California 92697, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Irvine, California 92697, United States
| | - Sumudu Leelananda
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Henri Palacci
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Meghan Lawler
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Svetlana Belyanskaya
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - LaShadric Grady
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Joe Franklin
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - Nicolas Tilmans
- Anagenex, 20 Maguire Road Suite 302, Lexington, Massachusetts 02421, United States
| | - David L. Mobley
- Department
of Chemistry, University of California,
Irvine, 1120 Natural Sciences II, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Irvine, California 92697, United States
| |
Collapse
|
9
|
Seydimemet M, Yang Y, Lv Y, Liu J, Yan Z, Zhao Y, Wang X, Lu X. Design, Construction, and Screening of Diversified Pyrimidine-Focused DNA-Encoded Libraries. ACS Med Chem Lett 2023; 14:1073-1078. [PMID: 37583819 PMCID: PMC10424316 DOI: 10.1021/acsmedchemlett.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Pyrimidine is a ubiquitous component in natural products and approved drugs, providing an ideal modular scaffold for generating libraries with drug-like properties. DNA-encoded library technology introduces a novel library modality where each small molecule is covalently linked to a unique oligo tag. This technology offers the advantages of rapidly generating and interrogating large-scale libraries containing billions of members, substantially reducing the entry barrier to their use in both academia and the pharmaceutical industry. In this Letter, we describe the synthesis of three DNA-encoded libraries based on different functionalized pyrimidine cores featuring diversified chemoselectivity and regioselectivity. Preliminary screening of these DNA-encoded libraries against BRD4 identified compounds with nanomolar inhibition activities.
Collapse
Affiliation(s)
- Mengnisa Seydimemet
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Yixuan Yang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Yuhan Lv
- School
of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong P.R. China
| | - Jiaxiang Liu
- Alphama
Biotechnology Suzhou Co., Ltd., 108 Yuxin Road, Suzhou City, Jiangsu Province 215123, China
| | - Ziqin Yan
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Yujun Zhao
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuan Wang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech
Park, Pudong, Shanghai 201203, China
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Abstract
The Human Genome Project ultimately aimed to translate DNA sequence into drugs. With the draft in hand, the Molecular Libraries Program set out to prosecute all genome-encoded proteins for drug discovery with automated high-throughput screening (HTS). This ambitious vision remains unfulfilled, even while innovations in sequencing technology have fully democratized access to genome-scale sequencing. Why? While the central dogma of biology allows us to chart the entirety of cellular metabolism through sequencing, there is no direct coding for chemistry. The rules of base pairing that relate DNA gene to RNA transcript and amino acid sequence do not exist for relating small-molecule structure with macromolecular binding partners and subsequently cellular function. Obtaining such relationships genome-wide is unapproachable via state-of-the-art HTS, akin to attempting genome-wide association studies using turn-of-the-millennium Sanger DNA sequencing.Our laboratory has been engaged in a multipronged technology development campaign to revolutionize molecular screening through miniaturization in pursuit of genome-scale drug discovery capabilities. The compound library was ripe for miniaturization: it clearly needed to become a consumable. We employed DNA-encoded library (DEL) synthesis principles in the development of solid-phase DELs prepared on microscopic beads, each harboring 100 fmol of a single library member and a DNA tag whose sequence describes the structure of the library member. Loading these DEL beads into 100 pL microfluidic droplets followed by online photocleavage, incubation, fluorescence-activated droplet sorting, and DNA sequencing of the sorted DEL beads reveals the chemical structures of bioactive compounds. This scalable library synthesis and screening platform has proven useful in several proof-of-concept projects involving current clinical targets.Moving forward, we face the problem of druggability and proteome-scale assay development. Developing biochemical or cellular assays for all genome-encoded targets is not scalable and likely impossible as most proteins have ill-defined or unknown activity and may not function outside of their native contexts. These are the dark undruggable expanses, and charting them will require advanced synthesis and analytical technologies that can generalize probe discovery, irrespective of mature protein function, to fulfill the Genome Project's vision of proteome-wide control of cellular pharmacology.
Collapse
|
11
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
12
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
14
|
Li L, Su M, Lu W, Song H, Liu J, Wen X, Suo Y, Qi J, Luo X, Zhou YB, Liao XH, Li J, Lu X. Triazine-Based Covalent DNA-Encoded Libraries for Discovery of Covalent Inhibitors of Target Proteins. ACS Med Chem Lett 2022; 13:1574-1581. [PMID: 36262386 PMCID: PMC9575176 DOI: 10.1021/acsmedchemlett.2c00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Since ibrutinib was approved by the FDA as an effective monotherapy for chronic lymphocytic leukemia (CLL) and multilymphoma, more and more FDA-approved covalent drugs are coming back into the market. On this occasion, the resurgence of interest in covalent drugs calls for more hit discovery techniques. However, the limited numbers of covalent libraries prevent the development of this area. Herein, we report the design of covalent DNA-encoded library (DEL) and its selection method for the discovery of covalent inhibitors for target proteins. These triazine-based covalent DELs yielded potent compounds after covalent selection against target proteins, including Bruton's Tyrosine Kinase (BTK), Janus kinase 3 (JAK3), and peptidyl-prolyl cis/trans isomerase NIMA-interacting-1 (Pin1).
Collapse
Affiliation(s)
- Linjie Li
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Mingbo Su
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
| | - Weiwei Lu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Hongzhi Song
- School
of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaxiang Liu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Xin Wen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Yanrui Suo
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jingjing Qi
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiaomin Luo
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu-Bo Zhou
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Zhongshan
Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400,P. R. China
| | - Xin-Hua Liao
- School of
Life Sciences, Shanghai University, Shanghai200444, P. R. China
| | - Jia Li
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Zhongshan
Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400,P. R. China
| | - Xiaojie Lu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| |
Collapse
|
15
|
Eom S, Kwon T, Lee DY, Park CH, Kim HJ. Copper-Mediated Three-Component Reaction for the Synthesis of N-Acylsulfonamide on DNA. Org Lett 2022; 24:4881-4885. [PMID: 35775977 DOI: 10.1021/acs.orglett.2c01675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-encoded library (DEL) technology is a new method for discovering hit compounds for target proteins in the pharmaceutical industry. The N-acylsulfonamide functional group has been reported to exhibit various pharmacological activities, and based on this, the demand for a method that allows its introduction into the DEL platform has increased. In this report, a procedure for synthesizing N-acylsulfonamide functional groups applicable to DEL construction was developed in the presence of a copper reagent and water as a nucleophile from simple alkynes or sulfonyl azides, which are widely commercially available. Furthermore, we prove that a new alternative procedure can be used to construct a DNA-encoded library.
Collapse
Affiliation(s)
- Solji Eom
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Taeyeon Kwon
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Da Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Chi Hoon Park
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Hyun Jin Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| |
Collapse
|
16
|
Iyer MR, Kundu B, Wood CM. Soluble epoxide hydrolase inhibitors: an overview and patent review from the last decade. Expert Opin Ther Pat 2022; 32:629-647. [PMID: 35410559 DOI: 10.1080/13543776.2022.2054329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Biological effects mediated by the CYP450 arm of arachidonate cascade implicate the enzyme-soluble epoxide hydrolase (sEH) in hydrolyzing anti-inflammatory epoxy fatty acids to pro-inflammatory diols. Hence, inhibiting the sEH offers a therapeutic approach to treating inflammatory diseases. Over three decades of work has shown the role of sEH inhibitors (sEHis) in treating various disorders in rodents and larger veterinary subjects. Novel chemical strategies to enhance the efficacy of sEHi have now appeared. AREAS COVERED A comprehensive review of patent literature related to soluble epoxide hydrolase inhibitors in the last decade (2010-2021) is provided. EXPERT OPINION Soluble epoxide hydrolase (sEH) is an important enzyme that metabolizes the bioactive epoxy fatty acids (EFAs) in the arachidonic acid signaling pathway and converts them to vicinal diols, which appear to be pro-inflammatory. Inhibition of sEH hence offers a mechanism to increase in vivo epoxyeicosanoid levels and resolve pro-inflammatory pathways in disease states. Significant efforts in the field have led to potent single target as well as multi-target inhibitors with promising in vitro and widely encompassing in vivo activities. Successful clinical translation of compounds targeting sEH inhibition will further validate the promised therapeutic potential of this pathway in treating human diseases.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Casey M Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| |
Collapse
|
17
|
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci 2021; 43:4-15. [PMID: 34782164 DOI: 10.1016/j.tips.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|