1
|
Haffouz A, Elleuch H, Khemakhem B, Ben Amor I, Jerbi A, Gargouri J, Sahli E, Mhadhbi N, Ghalla H, Rezgui F, Gargouri A, HadjKacem B. Antiplatelet activity and toxicity profile of novel phosphonium salts derived from Michael reaction. Eur J Pharm Sci 2024; 194:106692. [PMID: 38181870 DOI: 10.1016/j.ejps.2024.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
In this work, five novel phosphonium salts derived from the Michael reaction were screened for their antiplatelet activity. Our findings revealed that compounds 2a, 2b, 2c, and 2d significantly inhibit platelet aggregation triggered by ADP or collagen (P < 0.001). Notably, compound 2c inhibited the arachidonic acid pathway (P < 0.001). Moreover, the selected compounds reduce CD62-P expression and inhibit GPIIb/IIIa activation. The interactions of the active compounds with their targets, ADP and collagen receptors, P2Y12 and GPVI respectively were investigated in silico using molecular docking studies. The results revealed a strong affinity of the active compounds for P2Y12 and GPVI. Additionally, cytotoxicity assays on platelets, erythrocytes, and human embryonic kidney HEK293 cells showed that compounds 2a, 2c and 2d were non-toxic even at high concentrations. In summary, our study shows that phosphonium salts can have strong antiplatelet power and suggests that compounds 2a, 2c and 2d could be promising antiplatelet agents for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Asma Haffouz
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Haitham Elleuch
- Laboratory of Organic Chemistry, Faculty of Sciences, University Campus, 2092, University of Tunis El Manar, Tunis, Tunisia
| | - Bassem Khemakhem
- Laboratory of Plant Biotechnology, Sfax Faculty of Sciences, BP 1171, University of Sfax, 3038 Sfax, Tunisia
| | - Ikram Ben Amor
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Amira Jerbi
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Jalel Gargouri
- Laboratory of Hematology (LR19SP04), Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029 Sfax, Tunisia
| | - Emna Sahli
- Analytical service provider unit, Centre of Biotechnology of Sfax, University of Sfax, 3018, Sfax, Tunisia
| | - Noureddine Mhadhbi
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia; University of Monastir, Preparatory Institute for Engineering Studies of Monastir, 5019 Monastir, Tunisia
| | - Houcine Ghalla
- Quantum Physics and Statistic Laboratory, Faculty of Sciences, University of Monastir, Monastir, 5000, Tunisia
| | - Farhat Rezgui
- Laboratory of Organic Chemistry, Faculty of Sciences, University Campus, 2092, University of Tunis El Manar, Tunis, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Basma HadjKacem
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia.
| |
Collapse
|
2
|
Luo S, Zhang Y, Song J, Li Y, Wu C, Zhang C. Solubility-permeability interplay of a supersaturated lutein delivery system constructed by glycosylated stevioside and hydroxypropyl-methylcellulose. Int J Biol Macromol 2024; 258:128791. [PMID: 38123041 DOI: 10.1016/j.ijbiomac.2023.128791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
This study investigated the solubilizing capacity of glycosylated stevioside/hydroxypropyl-methylcellulose (stevia-G-HPMC) complexes with varying mass ratios on lutein. The impact on the steady-state flux and permeability coefficient of intracellular lutein was also explored through the construction of a Caco-2 cellular transport model. The results indicated that the equilibrium solubility of lutein linearly increased with an increase in stevia-G amount. The stability constants of the ternary system surpassed those of the binary system. Molecular dynamics simulation revealed a tight and stable structure in lutein supersaturated complexes. Meanwhile, lutein-stevia-G-HPMC complexes demonstrated superior cumulative penetrations, with the peak Papp (AP → BL) value being (3.24 ± 0.89) × 10-5 cm·s-1. There was a slight decrease in Papp (BL → AP), which improved the forward transport of lutein. Highly soluble lutein in aqueous environments saturated the extracellular transport proteins on the AP side of cell membranes, thereby maintaining the high permeability transport. Notably, the permeability trend of lutein in Caco-2 cells negatively correlated with the equilibrium solubility and matched the single exponential growth model. When the mass ratio of lutein, stevia-G and HPMC was 1:21:5, the solubility-permeability trade-off of lutein was effectively maintained.
Collapse
Affiliation(s)
- Shuwei Luo
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenchen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Torunoglu ST, Zajda A, Tampio J, Markowicz-Piasecka M, Huttunen KM. Metformin derivatives - Researchers' friends or foes? Biochem Pharmacol 2023; 215:115743. [PMID: 37591450 DOI: 10.1016/j.bcp.2023.115743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Metformin has been used for ages to treat diabetes mellitus due to its safety profile and low cost. However, metformin has variable pharmacokinetics in patients, and due to its poor oral absorption, the therapeutic doses are relatively high, causing unpleasant gastrointestinal adverse effects. Therefore, novel derivatives of metformin have been synthesized during the past decades. Particularly, after the mid-2000 s, when organic cation transporters were identified as the main metformin carriers, metformin derivatives have been under intensive investigation. Nevertheless, due to the biguanide structure, derivatives of metformin have been challenging to synthesize. Moreover, the mechanisms of metformin's action are not fully understood to date, and since it has multifunctional properties, the interests have switched to re-purposing for other diseases. Indeed, metformin derivatives have been demonstrated in many cases to be more effective than metformin itself and have the potential to be used in different diseases, including several types of cancers and neurodegenerative diseases. On the other hand, the pleiotropic nature of metformin and its derivatives can also create challenges. Not all properties are fit for all diseases. In this review, the history of the development of metformin-like compounds is summarized, and insights into their potential for future drug discovery are discussed.
Collapse
Affiliation(s)
- Sema Tuna Torunoglu
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Agnieszka Zajda
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
4
|
2-{[4-(4-Bromophenyl)piperazin-1-yl)]methyl}-4-(3-chlorophenyl)-5-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione. MOLBANK 2023. [DOI: 10.3390/m1548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The novel compound 2-{[4-(4-bromophenyl)piperazin-1-yl)]methyl}-4-(3-chlorophenyl-5-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione is obtained in good yield via a three-step protocol. The product’s structure is assigned by HRMS, IR, 1H and 13C NMR experiments.
Collapse
|