1
|
Ye T, Yu Y, Qu G, Ma H, Shi S, Ji J, Lyu J, Yang Y, Liu N, Li F. 211At radiolabeled APBA-FAPI for enhanced targeted-alpha therapy of glioma. Eur J Med Chem 2024; 279:116919. [PMID: 39342682 DOI: 10.1016/j.ejmech.2024.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Fibroblast activation protein-α (FAPα) is highly expressed in tumor-associated cells and has become one of the most attractive targeting sites in cancer diagnosis and therapy. To ameliorate the rapid metabolism of FAPα inhibitor (FAPI), here, a multifunctional binding agent was introduced to simultaneously achieve 211At radiolabeling and tumor retention prolongation of corresponding radiolabeled drug. 211At-APBA-FAPI was successfully synthesized by conjugating 211At with the designed FAPI carrier in satisfactory radiochemical yield (>60 %). 211At-APBA-FAPI exhibited excellent in vitro stability, significant tumor affinity and specific killing effect on FAPα-positive U87MG cells. Molecular docking reveals that FAPI decorated with albumin binder can bind with FAPα protein via multiple intermolecular interactions with a considerable binding energy of -9.66 kcal/mol 211At-APBA-FAPI exhibits good targeting in murine xenograft models, showing obviously longer tumor retention than previously-reported radioastatinated compound. As a result, 211At-APBA-FAPI presents pronounced therapeutic effect with ignorable normal organs/tissues biotoxicity. All these indicate that introducing a multifunctional binding agent can effectively enhance the availability of FAPI for 211At conjugation and tumoricidal effect, providing vital hints for the translation of targeted-alpha therapy based on radiolabeled FAPI derivatives.
Collapse
Affiliation(s)
- Tianzhen Ye
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Yuying Yu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Guofeng Qu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Huan Ma
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shilong Shi
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Jiujian Ji
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jie Lyu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
2
|
Hou R, Ye T, Qin Y, Qiu L, Lyu J, Tan F, Yang Y, Zhao S, Liu N, Li F. Strong Affinity between Astatine and Silver: An Available Approach to Anchoring 211At in Nanocarrier for Locoregional Oncotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23624-23631. [PMID: 39475623 DOI: 10.1021/acs.langmuir.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Recently, 211At-related endoradiotherapy has emerged as an important oncotherapy strategy. Conjugating 211At with a nanocarrier provides a vital candidate for radionuclide therapy of various malignant tumors. In this study, we proposed utilizing the intrinsically high affinity of heavy halogens and sulfhydryl compounds for metallic silver to achieve highly efficient conjugation between 211At and Ag-based nanoparticles in a simple way. 211At@Ag-PEG-FA was obtained via a one-pot assembly of 211At, Ag, and SH-PEG-FA in extremely high radiolabeling yield (>95%) within 15 min and maintained excellent stability in simulated physiochemical media. Additionally, the prepared 211At@Ag-PEG-FA demonstrated specific binding to the breast cancer cell line (4T1), with a high endocytosis rate and low reflux, leading to significant cell growth inhibition. 211At@Ag-PEG-FA exhibits an excellent antitumor effect that completely suppressed tumor growth during the first week, effectively prolonging the median survival of mice to 44 days, relative to 18 days in the control group. All of the mice exhibited minimal side effects from 211At@Ag-PEG-FA in the experiment, indicating its acceptable biosafety. Our work shows that the strong affinity of Ag can be utilized to produce radioactivated nanomedicines with excellent stability and high efficiency, which also provides some valuable insights for the 211At radiolabeling of general compounds.
Collapse
Affiliation(s)
- Ruitong Hou
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Tianzhen Ye
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yilin Qin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Long Qiu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jie Lyu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Fuyuan Tan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals (Basel) 2024; 17:1031. [PMID: 39204136 PMCID: PMC11359268 DOI: 10.3390/ph17081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.
Collapse
Affiliation(s)
- Ruth Christine Winter
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mariam Amghar
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Anja S. Wacker
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Gábor Bakos
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Harun Taş
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - James M. Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| |
Collapse
|
4
|
Oster C, Kessler L, Blau T, Keyvani K, Pabst KM, Fendler WP, Fragoso Costa P, Lazaridis L, Schmidt T, Feldheim J, Pierscianek D, Schildhaus HU, Sure U, Ahmadipour Y, Kleinschnitz C, Guberina N, Stuschke M, Deuschl C, Scheffler B, Herrmann K, Kebir S, Glas M. The Role of Fibroblast Activation Protein in Glioblastoma and Gliosarcoma: A Comparison of Tissue, 68Ga-FAPI-46 PET Data, and Survival Data. J Nucl Med 2024; 65:1217-1223. [PMID: 38960714 DOI: 10.2967/jnumed.123.267151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Despite their unique histologic features, gliosarcomas belong to the group of glioblastomas and are treated according to the same standards. Fibroblast activation protein (FAP) is a component of a tumor-specific subpopulation of fibroblasts that plays a critical role in tumor growth and invasion. Some case studies suggest an elevated expression of FAP in glioblastoma and a particularly strong expression in gliosarcoma attributed to traits of predominant mesenchymal differentiation. However, the prognostic impact of FAP and its diagnostic and therapeutic potential remain unclear. Here, we investigate the clinical relevance of FAP expression in gliosarcoma and glioblastoma and how it correlates with 68Ga-FAP inhibitor (FAPI)-46 PET uptake. Methods: Patients diagnosed with gliosarcoma or glioblastoma without sarcomatous differentiation with an overall survival of less than 2.5 y were enrolled. Histologic examination included immunohistochemistry and semiquantitative scoring of FAP (0-3, with higher values indicating stronger expression). Additionally, 68Ga-FAPI-46 PET scans were performed in a subset of glioblastomas without sarcomatous differentiation patients. The clinical SUVs were correlated with FAP expression levels in surgically derived tumor tissue and relevant prognostic factors. Results: Of the 61 patients who were enrolled, 13 of them had gliosarcoma. Immunohistochemistry revealed significantly more FAP in gliosarcomas than in glioblastomas without sarcomatous differentiation of tumor tissue (P < 0.0001). In the latter, FAP expression was confined to the perivascular space, whereas neoplastic cells additionally expressed FAP in gliosarcoma. A significant correlation of immunohistochemical FAP with SUVmean and SUVpeak of 68Ga-FAPI-46 PET indicates that clinical tracer uptake represents FAP expression of the tumor. Although gliosarcomas express higher levels of FAP than do glioblastomas without sarcomatous differentiation, overall survival does not significantly differ between the groups. Conclusion: The analysis reveals a significant correlation between SUVmean and SUVpeak in 68Ga-FAPI-46 PET and immunohistochemical FAP expression. This study indicates that FAP expression is much more abundant in the gliosarcoma subgroup of glioblastomas. This could open not only a diagnostic but also a therapeutic gap, since FAP could be explored as a theranostic target to enhance survival in a distinct subgroup of high-risk brain tumor patients with poor survival prognosis.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Tobias Blau
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Teresa Schmidt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jonas Feldheim
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, St. Marienhospital Lünen, Lünen, Germany
| | - Hans Ulrich Schildhaus
- Institute of Pathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Discovery Life Sciences Biomarker Services GmbH, Kassel, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Nika Guberina
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Heidelberg, Germany
| | - Sied Kebir
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Roncali L, Marionneau-Lambot S, Roy C, Eychenne R, Gouard S, Avril S, Chouin N, Riou J, Allard M, Rousseau A, Guérard F, Hindré F, Chérel M, Garcion E. Brain intratumoural astatine-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice. EBioMedicine 2024; 105:105202. [PMID: 38905749 PMCID: PMC11246004 DOI: 10.1016/j.ebiom.2024.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4). METHODS We orthotopically transplanted 50,000 GL261 cells of murine GB into the right striatum of syngeneic female C57BL/6JRj mice using stereotaxis. After MRI validation of tumour presence at day 11, TAT was injected at the same coordinates. Biodistribution, efficacy, toxicity, local and systemic responses were assessed following application of this protocol. The 9E7.4 monoclonal antibody was labelled with iodine-125 (125I) for biodistribution and with astatine-211 (211At) for the other experiments. FINDINGS The 211At-9E7.4 TAT demonstrated robust efficacy in reducing orthotopic tumours and achieved improved survival rates in the C57BL/6JRj model, reaching up to 70% with a minimal activity of 100 kBq. Targeting SDC1 ensured the cerebral retention of 211At over an optimal time window, enabling low-activity administration with a minimal toxicity profile. Moreover, TAT substantially reduced the occurrence of secondary tumours and provided resistance to new tumour development after contralateral rechallenge, mediated through the activation of central and effector memory T cells. INTERPRETATION The locoregional 211At-9E7.4 TAT stands as one of the most efficient TAT across all preclinical GB models. This study validates SDC1 as a pertinent therapeutic target for GB and underscores 211At-9E7.4 TAT as a promising advancement to improve the treatment and quality of life for patients with GB. FUNDING This work was funded by the French National Agency for Research (ANR) "France 2030 Investment Plan" Labex Iron [ANR-11-LABX-18-01], The SIRIC ILIAD [INCa-DGOS-INSERM-18011], the French program "Infrastructure d'Avenir en Biologie-Santé" (France Life Imaging) [ANR-11-INBS-0006], the PIA3 of the ANR, integrated to the "France 2030 Investment Plan" [ANR-21-RHUS-0012], and support from Inviscan SAS (Strasbourg, France). It was also related to: the ANR under the frame of EuroNanoMed III (project GLIOSILK) [ANR-19-ENM3-0003-01]; the "Région Pays-de-la-Loire" under the frame of the Target'In project; the "Ligue Nationale contre le Cancer" and the "Comité Départemental de Maine-et-Loire de la Ligue contre le Cancer" (CD49) under the frame of the FusTarG project and the "Tumour targeting, imaging and radio-therapies network" of the "Cancéropôle Grand-Ouest" (France). This work was also funded by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Nantes, and the University of Angers.
Collapse
Affiliation(s)
- Loris Roncali
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Séverine Marionneau-Lambot
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CHU Nantes, Nantes Université, Service de médecine nucléaire, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Charlotte Roy
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Romain Eychenne
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; GIP ARRONAX, F-44160, Saint-Herblain, France
| | - Sébastien Gouard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Sylvie Avril
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France
| | - Nicolas Chouin
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; ONIRIS, F-44000, Nantes, France
| | - Jérémie Riou
- CHU Angers, Université d'Angers, F-49000, Angers, France
| | - Mathilde Allard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Audrey Rousseau
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; CHU Angers, Université d'Angers, F-49000, Angers, France
| | - François Guérard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Michel Chérel
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; Institut de Cancérologie de l'Ouest, Service de médecine nucléaire, F-44160, Saint-Herblain, France.
| | - Emmanuel Garcion
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France; PACEM (Plateforme d'Analyse Cellulaire et Moléculaire), Université d'Angers, SFR 4208, F-49000, Angers, France.
| |
Collapse
|
6
|
Qiu L, Wu J, Luo N, Xiao Q, Geng J, Xia L, Liao J, Yang Y, Liu N, Zhang J, Li F. Preparation of Medical 228Th- 224Ra Radionuclide Generator Based on SiO 2@TiO 2 Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11723-11731. [PMID: 38775311 DOI: 10.1021/acs.langmuir.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
224Ra (T1/2 = 3.63 d), an α-emitting radionuclide, holds significant promise in cancer endoradiotherapy. Current 224Ra-related therapy is still scarce because of the lack of reliable radionuclide supply. The 228Th-224Ra radionuclide generator can undoubtedly introduce continuous and sustainable availability of 224Ra for advanced nuclear medicine. However, conventional metal oxides for such radionuclide generators manifest suboptimal adsorption capacities for the parent nuclide, primarily attributable to their limited surface area. In this work, core-shell SiO2@TiO2 microspheres were proposed to develop as column materials for the construction of a 228Th-224Ra generator. SiO2@TiO2 microspheres were well prepared and systematically characterized, which has also been demonstrated to have good adsorption capacity to 228Th and very weak binding affinity toward 224Ra via simulated chemical separation. Upon introducing 228Th-containing solution onto the SiO2@TiO2 functional column, a 228Th-224Ra generator with excellent retention of the parent radionuclide and ideal elution efficiency of daughter radionuclide was obtained. The prepared 228Th-224Ra generator can produce 224Ra with high purity and medical usability in good elution efficiency (98.72%) even over five cycles. To the best of our knowledge, this is the first time that the core-shell mesoporous materials have been applied in a radionuclide generator, which can offer valuable insights for materials chemistry, radiochemical separation, and biological medicine.
Collapse
Affiliation(s)
- Long Qiu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu 610005, China
| | - Jianrong Wu
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu 610005, China
| | - Ning Luo
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu 610005, China
| | - Qian Xiao
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu 610005, China
| | - Junshan Geng
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu 610005, China
| | - Lingting Xia
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Jinsong Zhang
- Sichuan Engineering Research Center for Radioactive Isotope, National Engineering Research Center for Isotopes and Pharmaceuticals, Nuclear Power Institute of China, Chengdu 610005, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Gao J, Li M, Yin J, Liu M, Wang H, Du J, Li J. The Different Strategies for the Radiolabeling of [ 211At]-Astatinated Radiopharmaceuticals. Pharmaceutics 2024; 16:738. [PMID: 38931860 PMCID: PMC11206656 DOI: 10.3390/pharmaceutics16060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Astatine-211 (211At) has emerged as a promising radionuclide for targeted alpha therapy of cancer by virtue of its favorable nuclear properties. However, the limited in vivo stability of 211At-labeled radiopharmaceuticals remains a major challenge. This review provides a comprehensive overview of the current strategies for 211At radiolabeling, including nucleophilic and electrophilic substitution reactions, as well as the recent advances in the development of novel bifunctional coupling agents and labeling approaches to enhance the stability of 211At-labeled compounds. The preclinical and clinical applications of 211At-labeled radiopharmaceuticals, including small molecules, peptides, and antibodies, are also discussed. Looking forward, the identification of new molecular targets, the optimization of 211At production and quality control methods, and the continued evaluation of 211At-labeled radiopharmaceuticals in preclinical and clinical settings will be the key to realizing the full potential of 211At-based targeted alpha therapy. With the growing interest and investment in this field, 211At-labeled radiopharmaceuticals are poised to play an increasingly important role in future cancer treatment.
Collapse
Affiliation(s)
- Jie Gao
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
- China Institute of Atomic Energy, Beijing 102413, China;
| | - Mei Li
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
| | - Jingjing Yin
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
| | - Mengya Liu
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
- China Institute of Atomic Energy, Beijing 102413, China;
| | - Hongliang Wang
- First Hospital of Shanxi Medical University, Taiyuan 030001, China;
| | - Jin Du
- China Institute of Atomic Energy, Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China
| | - Jianguo Li
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
| |
Collapse
|
8
|
Munekane M, Fuchigami T, Ogawa K. Recent advances in the development of 225Ac- and 211At-labeled radioligands for radiotheranostics. ANAL SCI 2024; 40:803-826. [PMID: 38564087 PMCID: PMC11035452 DOI: 10.1007/s44211-024-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Radiotheranostics utilizes a set of radioligands incorporating diagnostic or therapeutic radionuclides to achieve both diagnosis and therapy. Imaging probes using diagnostic radionuclides have been used for systemic cancer imaging. Integration of therapeutic radionuclides into the imaging probes serves as potent agents for radionuclide therapy. Among them, targeted alpha therapy (TAT) is a promising next-generation cancer therapy. The α-particles emitted by the radioligands used in TAT result in a high linear energy transfer over a short range, inducing substantial damage to nearby cells surrounding the binding site. Therefore, the key to successful cancer treatment with minimal side effects by TAT depends on the selective delivery of radioligands to their targets. Recently, TAT agents targeting biomolecules highly expressed in various cancer cells, such as sodium/iodide symporter, norepinephrine transporter, somatostatin receptor, αvβ3 integrin, prostate-specific membrane antigen, fibroblast-activation protein, and human epidermal growth factor receptor 2 have been developed and have made remarkable progress toward clinical application. In this review, we focus on two radionuclides, 225Ac and 211At, which are expected to have a wide range of applications in TAT. We also introduce recent fundamental and clinical studies of radiopharmaceuticals labeled with these radionuclides.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
9
|
Tanudji J, Kasai H, Okada M, Ogawa T, Aspera SM, Nakanishi H. 211At on gold nanoparticles for targeted radionuclide therapy application. Phys Chem Chem Phys 2024; 26:12915-12927. [PMID: 38629229 DOI: 10.1039/d3cp05326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Targeted alpha therapy (TAT) is a methodology that is being developed as a promising cancer treatment using the α-particle decay of radionuclides. This technique involves the use of heavy radioactive elements being placed near the cancer target area to cause maximum damage to the cancer cells while minimizing the damage to healthy cells. Using gold nanoparticles (AuNPs) as carriers, a more effective therapy methodology may be realized. AuNPs can be good candidates for transporting these radionuclides to the vicinity of the cancer cells since they can be labeled not just with the radionuclides, but also a host of other proteins and ligands to target these cells and serve as additional treatment options. Research has shown that astatine and iodine are capable of adsorbing onto the surface of gold, creating a covalent bond that is quite stable for use in experiments. However, there are still many challenges that lie ahead in this area, whether they be theoretical, experimental, and even in real-life applications. This review will cover some of the major developments, as well as the current state of technology, and the problems that need to be tackled as this research topic moves along to maturity. The hope is that with more workers joining the field, we can make a positive impact on society, in addition to bringing improvement and more knowledge to science.
Collapse
Affiliation(s)
- Jeffrey Tanudji
- Department of Applied Physics, The University of Osaka, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideaki Kasai
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Michio Okada
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
- Department of Chemistry, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tetsuo Ogawa
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
- Department of Physics, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Susan M Aspera
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Hiroshi Nakanishi
- National Institute of Technology, Akashi College, 679-3 Nishioka, Uozumi-cho, Akashi, Hyogo 674-8501, Japan
| |
Collapse
|
10
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
11
|
Rezaei S, Gharapapagh E, Dabiri S, Heidari P, Aghanejad A. Theranostics in targeting fibroblast activation protein bearing cells: Progress and challenges. Life Sci 2023; 329:121970. [PMID: 37481033 PMCID: PMC10773987 DOI: 10.1016/j.lfs.2023.121970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Cancer cells are surrounded by a complex and highly dynamic tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), a critical component of TME, contribute to cancer cell proliferation as well as metastatic spread. CAFs express a variety of biomarkers, which can be targeted for detection and therapy. Most importantly, CAFs express high levels of fibroblast activation protein (FAP) which contributes to progression of cancer, invasion, metastasis, migration, immunosuppression, and drug resistance. As a consequence, FAP is an attractive theranostic target. In this review, we discuss the latest advancement in targeting FAP in oncology using theranostic biomarkers and imaging modalities such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), fluorescence imaging, and magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Sahar Rezaei
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharapapagh
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Dabiri
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Heidari
- Departments of Radiology, Massachusetts General Hospital, Boston, United States
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Privé BM, Boussihmad MA, Timmermans B, van Gemert WA, Peters SMB, Derks YHW, van Lith SAM, Mehra N, Nagarajah J, Heskamp S, Westdorp H. Fibroblast activation protein-targeted radionuclide therapy: background, opportunities, and challenges of first (pre)clinical studies. Eur J Nucl Med Mol Imaging 2023; 50:1906-1918. [PMID: 36813980 PMCID: PMC10199876 DOI: 10.1007/s00259-023-06144-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Fibroblast activation protein (FAP) is highly overexpressed in stromal tissue of various cancers. While FAP has been recognized as a potential diagnostic or therapeutic cancer target for decades, the surge of radiolabeled FAP-targeting molecules has the potential to revolutionize its perspective. It is presently hypothesized that FAP targeted radioligand therapy (TRT) may become a novel treatment for various types of cancer. To date, several preclinical and case series have been reported on FAP TRT using varying compounds and showing effective and tolerant results in advanced cancer patients. Here, we review the current (pre)clinical data on FAP TRT and discuss its perspective towards broader clinical implementation. METHODS: A PubMed search was performed to identify all FAP tracers used for TRT. Both preclinical and clinical studies were included if they reported on dosimetry, treatment response or adverse events. The last search was performed on July 22 2022. In addition, a database search was performed on clinical trial registries (date 15th of July 2022) to search for prospective trials on FAP TRT. RESULTS In total, 35 papers were identified that were related to FAP TRT. This resulted in the inclusion of the following tracers for review: FAPI-04, FAPI-46, FAP-2286, SA.FAP, ND-bisFAPI, PNT6555, TEFAPI-06/07, FAPI-C12/C16, and FSDD. CONCLUSION To date, data was reported on more than 100 patients that were treated with different FAP targeted radionuclide therapies such as [177Lu]Lu-FAPI-04, [90Y]Y-FAPI-46, [177Lu]Lu-FAP-2286, [177Lu]Lu-DOTA.SA.FAPI and [177Lu]Lu-DOTAGA.(SA.FAPi)2. In these studies, FAP targeted radionuclide therapy has resulted in objective responses in difficult to treat end stage cancer patients with manageable adverse events. Although no prospective data is yet available, these early data encourages further research.
Collapse
Affiliation(s)
- Bastiaan M Privé
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands.
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands.
| | - Mohamed A Boussihmad
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Bart Timmermans
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Willemijn A van Gemert
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Steffie M B Peters
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Yvonne H W Derks
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - James Nagarajah
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
| | - Harm Westdorp
- Department of Radiology and Nuclear Medicine, PO Box 9101, Radboudumc, 6500 HB, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Aso A, Nabetani H, Matsuura Y, Kadonaga Y, Shirakami Y, Watabe T, Yoshiya T, Mochizuki M, Ooe K, Kawakami A, Jinno N, Toyoshima A, Haba H, Wang Y, Cardinale J, Giesel FL, Shimoyama A, Kaneda-Nakashima K, Fukase K. Evaluation of Astatine-211-Labeled Fibroblast Activation Protein Inhibitor (FAPI): Comparison of Different Linkers with Polyethylene Glycol and Piperazine. Int J Mol Sci 2023; 24:ijms24108701. [PMID: 37240044 DOI: 10.3390/ijms24108701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.
Collapse
Affiliation(s)
- Ayaka Aso
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Hinako Nabetani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yoshifumi Matsuura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yuichiro Kadonaga
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshifumi Shirakami
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-asagi, Ibaraki 567-0085, Osaka, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | - Kazuhiro Ooe
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Atsuko Kawakami
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Naoya Jinno
- R&D Division, Alpha Fusion Inc., 10-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Atsushi Toyoshima
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Hiromitsu Haba
- RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| | - Yang Wang
- RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| | - Jens Cardinale
- Department of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Frederik Lars Giesel
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Department of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Kazuko Kaneda-Nakashima
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Core for Medicine and Science Collaborative Research and Education, Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Core for Medicine and Science Collaborative Research and Education, Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
14
|
Zhu M, Zhang J, Yang M, Zhang H, Xu T, Kan F, Zhang X, Zhang S, Yin Y, Yu F. In vitro and in vivo study on the treatment of non-small cell lung cancer with radionuclide labeled PD-L1 nanobody. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04793-0. [PMID: 37085729 DOI: 10.1007/s00432-023-04793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
PURPOSE Nanobodies have become promising carriers due to excellent in vivo properties. Radiopharmaceutical therapy targeting programmed cell death ligand 1 (PD-L1) is an effective therapeutic strategy. Our study aimed to explore therapeutic efficacy of 131I labeled PD-L1 nanobody (Nb109) in non-small cell lung cancers (NSCLCs) in vitro and in vivo. METHODS 131I-Nb109 was synthesized by chloramine-T method. We implemented stability analysis, SDS-PAGE and lipid-water partition coefficient test to assess its quality. Cell uptake assay and SPECT/CT scan were applied to evaluate its ability to target NSCLCs (H460 and A549). CCK8 assay and in vivo efficacy assay were conducted to estimate its therapeutic effect in H460 tumors. Damage-associated molecular patterns (DAMPs) release in H460 cells incubated with 131I-Nb109 was investigated by western blot and ATP test kit. RESULTS 131I-Nb109 was hydrophilic with high labeling rate (69.51-98.06%), radiochemical purity (99.17% ± 0.76%) and stability. Cell uptake experiments showed that H460 cells (PD-L1 positive) compared with A549 cells (PD-L1 negative) had higher 131I-Nb109 uptake. SPECT/CT imaging revealed the accumulation of 131I-Nb109 in H460 tumor within 48 h. 131I-Nb109 inhibited H460 tumor growth without toxic side effects in contrast with control group. It also induced H460 cells to release DAMPs (adenosine triphosphate, high mobility group box 1, and heat shock protein 70). CONCLUSION 131I-Nb109 had high stability, excellent ability to target and treatment PD-L1 positive tumors, and can improve tumor immunogenicity. The results of our study were expected to inspire the development of more novel radiopharmaceuticals to treat NSCLCs.
Collapse
Affiliation(s)
- Mengqin Zhu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200040, China
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, 230032, China
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China
| | - Tao Xu
- Smart-Nuclide Biopharma Co. Ltd, No. 218 Xing-Hu Rd., Suzhou, 215125, China
| | - Fei Kan
- Smart-Nuclide Biopharma Co. Ltd, No. 218 Xing-Hu Rd., Suzhou, 215125, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China
| | - Shenghong Zhang
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200040, China
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, 230032, China
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China
| | - Fei Yu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200040, China.
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, 230032, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200040, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
15
|
Kaneda-Nakashima K, Shirakami Y, Kadonaga Y, Watabe T. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00018-4. [PMID: 36997365 DOI: 10.1016/j.cpet.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Fibroblast activation protein (FAP) was first reported in 1986. However, FAP is not expressed in normal fibroblasts, normal or malignant epithelial cells, or the stroma of benign epithelial tumors. FAP is a cell membrane-bound serine peptidase overexpressed on the surface of cancer-associated fibroblasts and, as such, is a novel target for molecular imaging of several tumors. FAP inhibitors (FAPI) are potential theranostic molecular probes for various cancers. A tumor model expressing FAP was used to verify or confirm the usefulness of FAPI experimentally.
Collapse
|
16
|
Liao Z, Tang Y, Liu W, Liu Y, Peng S, Lan T, Liao J, Yang Y, Liu N, Li F. 111In and 131I labeled nimotuzumabs for targeted radiotherapy of a murine model of glioma. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
18
|
Zhang J, Li F, Yin Y, Liu N, Zhu M, Zhang H, Liu W, Yang M, Qin S, Fan X, Yang Y, Zhang K, Yu F. Alpha radionuclide-chelated radioimmunotherapy promoters enable local radiotherapy/chemodynamic therapy to discourage cancer progression. Biomater Res 2022; 26:44. [PMID: 36076298 PMCID: PMC9461185 DOI: 10.1186/s40824-022-00290-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Astatine-211 is an α-emitter with high-energy α-ray and high cytotoxicity for cancer cells. However, the targeted alpha therapy (TAT) also suffers from insufficient systematic immune activation, resulting in tumor metastasis and relapse. Combined immune checkpoint blockade (ICB) with chemodynamic therapy (CDT) could boost antitumor immunity, which may magnify the immune responses of TAT. This study aims to discourage tumor metastasis and relapse by tri-model TAT-CDT-ICB strategy. METHODS We successfully designed Mn-based radioimmunotherapy promoters (211At-ATE-MnO2-BSA), which are consisting of 211At, MnO2 and bovine serum albumin (BSA). The efficacy of 211At-ATE-MnO2-BSA was studied as monotherapy or in combination with anti-PD-L1 in both metastatic and relapse models. The immune effects of radioimmunotherapy promoters on cytotoxic T lymphocytes and dendritic cells (DCs) were analyzed by flow cytometry. Enzyme-linked immunosorbent assay and immunofluorescence were used to explore the underlying mechanism. RESULTS Such radioimmunotherapy promoters could not only enhance the therapeutic outcomes of TAT and CDT, but also induce robust anti-cancer immune activity by activating dendritic cells. More intriguingly, 211At-ATE-MnO2-BSA could effectively suppress the growths of primary tumors and distant tumors when combined with immune checkpoint inhibitors. CONCLUSIONS The tri-model TAT-CDT-ICB strategy provides a long-term immunological memory, which can protect against tumor rechallenge after eliminating original tumors. Therefore, this work presents a novel approach for TAT-CDT-ICB tri-modal cancer therapy with repressed metastasis and relapse in clinics.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Kun Zhang
- Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
19
|
Liu W, Ma H, Liang R, Chen X, Li H, Lan T, Yang J, Liao J, Qin Z, Yang Y, Liu N, Li F. Targeted Alpha Therapy of Glioma Using 211At-Labeled Heterodimeric Peptide Targeting Both VEGFR and Integrins. Mol Pharm 2022; 19:3206-3216. [PMID: 35993583 DOI: 10.1021/acs.molpharmaceut.2c00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted radionuclide therapy based on α-emitters plays an increasingly important role in cancer treatment. In this study, we proposed to apply a heterodimeric peptide (iRGD-C6-lys-C6-DA7R) targeting both VEGFR and integrins as a new vector for 211At radiolabeling to obtain high-performance radiopharmaceuticals with potential in targeted alpha therapy (TAT). An astatinated peptide, iRGD-C6-lys(211At-ATE)-C6-DA7R, was prepared with a radiochemical yield of ∼45% and high radiochemical purity of >95% via an electrophilic radioastatodestannylation reaction. iRGD-C6-lys(211At-ATE)-C6-DA7R showed good stability in vitro and high binding ability to U87MG (glioma) cells. Systematic in vitro antitumor investigations involving cytotoxicity, apoptosis, distribution of the cell cycle, and reactive oxygen species (ROS) clearly demonstrated that 211At-labeled heterodimeric peptides could significantly inhibit cell viability, induce cell apoptosis, arrest the cell cycle in G2/M phase, and increase intracellular ROS levels in a dose-dependent manner. Biodistribution revealed that iRGD-C6-lys(211At-ATE)-C6-DA7R had rapid tumor accumulation and fast normal tissue/organ clearance, which was mainly excreted through the kidneys. Moreover, in vivo therapeutic evaluation indicated that iRGD-C6-lys(211At-ATE)-C6-DA7R was able to obviously inhibit tumor growth and prolong the survival of mice bearing glioma xenografts without notable toxicity to normal organs. All these results suggest that TAT mediated by iRGD-C6-lys(211At-ATE)-C6-DA7R can provide an effective and promising strategy for the treatment of glioma and some other tumors.
Collapse
Affiliation(s)
- Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Xijian Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Hongyan Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Gansu Provincial Isotope Laboratory, Lanzhou 730300, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Zhi Qin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Gansu Provincial Isotope Laboratory, Lanzhou 730300, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
20
|
Wang C, Hu Z, Ding F, Zhao H, Du F, Lv C, Li L, Huang G, Liu J. Radiosynthesis and First Preclinical Evaluation of the Novel 11C-Labeled FAP Inhibitor 11C-FAPI: A Comparative Study of 11C-FAPIs and (68Ga) Ga-DOTA-FAPI-04 in a High–FAP-Expression Mouse Model. Front Chem 2022; 10:939160. [PMID: 35991604 PMCID: PMC9388731 DOI: 10.3389/fchem.2022.939160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: 68Ga-labeled fibroblast activation protein inhibitors, such as [68Ga]Ga-DOTA-FAPI-04 and [68Ga]Ga-DOTA-FAPI-46, have been successfully applied in positron emission tomography imaging of various tumor types. To broaden the PET tracers of different positron nuclides for imaging studies of FAP-dependent diseases, we herein report the radiosynthesis and preclinical evaluation of two 11C-labeled FAP inhibitors, 11C-RJ1101 and 11C-RJ1102. Methods: Two phenolic hydroxyl precursors based on a quinoline amide core coupled with a 2-cyanopyrrolidine moiety were coupled with [11C]CH3I to synthesize 11C-RJ1101 and 11C-RJ1102. In vivo small-animal PET and biological distribution studies of 11C-RJ1101 and 11C-RJ1102 compared to [68Ga]Ga-DOTA-FAPI-04 were conducted in nude mice bearing U87MG tumor xenografts at 30, 60, and 90min, respectively. Results: 11C-RJ1101 and 11C-RJ1102 were synthesized in over 15% radiochemical yields, with specific activities of 67 GBq/μmol and 34 GBq/μmol, respectively, at the end of synthesis and radiochemical purities greater than 99%. In U87MG tumor xenograft PET studies, the three tracers experienced higher specific uptake at the tumor site. However, because of significant differences in metabolism and clearance, [68Ga]Ga-DOTA-FAPI-04 experienced high uptake in the kidney, whereas 11C-RJ1101 and 11C-RJ1102 showed high uptake in the liver and intestine. Biodistribution studies revealed significant hepatobiliary excretion of 11C-RJ1101 and 11C-RJ1102. 11C-RJ1102 showed higher specific tumor uptake in U87MG xenografts (1.71 ± 0.08% injected dose per Gram of tissue [ID/g]) than 11C-RJ1101 (1.34 ± 0.10%ID/g) and [68Ga]Ga-DOTA-FAPI-04 (1.29 ± 0.04%ID/g) after 30 min p. i. In orthotopic glioma models, the uptake values were 0.07 ± 0.03% ([68Ga]Ga-DOTA-FAPI-04) and 0.16 ± 0.03% (11C-RJ1102), respectively. Conclusion: 11C-RJ1101 and 11C-RJ1102 are interesting candidates for translation to the clinic, taking advantage of the shorter half-life and physical imaging properties of C-11.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Cheng Wang, ; Gang Huang, ; Jianjun Liu,
| | - Zhoumi Hu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Ding
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuqiang Du
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Lv
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianghua Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Cheng Wang, ; Gang Huang, ; Jianjun Liu,
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Cheng Wang, ; Gang Huang, ; Jianjun Liu,
| |
Collapse
|
21
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Recent progress of astatine-211 in endoradiotherapy: Great advances from fundamental properties to targeted radiopharmaceuticals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|